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ANALIZA STRUKTURE INTEGRALNIH KRIVIH
NELINEARNIH DIFERENCIJALNIH JEDNADZBI

Sazetak

Skoro sve pojave u prirodi, odnosno u tehnici i fizici mogu biti
opisane pomocu diferencijalnih jednadzbi ili sistema diferencijalnih jednadZzbi.
Matematicki modeli tih pojava su u proslosti bili idealizovani iz razloga da
se dobije diferencijalna jednadzba ili sistem diferencijalnih jednadzbi rjesiv u
zatvorenomobliku. Danas razmatramo pojave koje se najcesce opisujunelinearnim
diferencijalnim jednadzbama, tj. jednadzbama koje najcesce nisu rjesive u
zatvorenom obliku. Zbog toga je od posebnog interesa da se okarakteriziraju
svojstva rjesenja nelinearnih diferencijalnih jednadzbi i sistema diferencijalnih
Jednazdbi, kao i numericke metode koje omogucavaju aproksimaciju tih rjesenja.
U ovom radu je data analiza rjesenja nelinearnih diferencijalnih jednadzbi ili
sistema jednadzbi na osnovu strukture njenih integralnih krivih.

Kljucne rijeci: Trajektorija, fazna ravan, dinamicki sistem, stabilnost,
granicni cikl.

THE ANALYSIS OF STRUCTURE OF AN INTEGRATE
CURVES NONLINEAR DIFFERENTIAL EQUATIONS

Summary

Almost all phenomena in nature and in engineering and physics
can be described by differential equations or systems of differential
equations. Mathematical models of these phenomena have been idealized in the
past due to get a differential equation or system of differential equations solvable
in closed form. Today we consider the phenomena which are typically nonlinear
differential equations, the equations which are usually not solvable in closed
form. It is therefore of particular interest to characterize properties of solutions
of nonlinear differential equations and systems of differential equations and
numerical methods that allow an approximation of these solutions. In this paper
was given an analysis of solutions of nonlinear differential equations or systems
of equations based on the structure of its integral curves.

Key words: trajectory, phase plane, dynamical system, stability,
boundary cycle.
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UuvoD

Skoro sve pojave u prirodi mogu se opisati diferencijalnim
jednadzbama ili sistemima diferencijalnih jednadZbi. Matematicki
modeli u proSlosti su bili idealizovani u smislu da se dobije
diferencijalna jednadzba ili sistem diferencijalnih jednadzbi koji
je rjesiv u zatvorenom obliku. Danas se razmatraju pojave koje se
opisuju nelinearnim diferencijalnim jednadzbama, tj. jednadzbama
koje nisu rjesive u zatvorenom obliku. U tom slucaju je od posebnog
znacaja da se okarakteriziraju osobine rjeSenja nelinearnih
diferencijalnih jednadzbi kao i numericke metode koje omogucavaju
aproksimaciju tih rjeSenja.

Prije same primjene neke numericke metode treba
prethodno provjeriti da li je dati problem ,,pravilno formulisan”, tj.
da li smo pomocu matematickog modela pravilno i potpuno opisali
posmatranu pojavu.

Za problem zadan obi¢nim diferencijalnim jednadzbama ili
parcijalnim diferencijalnim jednadzbama kazemo da je , korektno”
postavljen, tj. formulisan, u klasi funcija F, ako su zadovoljena
sljedeca tri uslova:

1° Postoji rjeSenje u klasi F, tzv. problem ,egzistencije ,, rjeSenja;

2% RjeSenje je jedinstveno u klasi F, tzv. problem ,jedinstvenosti’
rjeSenja;

3% Rjesenje neprekidno zavisi od datih uslova-podataka (od pocetnih
uslova, rubnih uslova, itd.), tzv. problem ,stabilnosti” rjeSenja.

Korektnost postavljenog problema je narocito vazna za
njegovu primjenu, jer postavljeni problem opisuje neku fizicku
pojavu. Uslovom 3° se obezbjeduje da rjeSenje problema ne zavisi
bitno od gresaka koje se uvijek javljaju prilikom mjerenja (dopunski
uslovi i parametri) posmatrane fizicke pojave. Ako rjeSenje problema
nije neprekidna funkcija tih parametara, ne bismo mogli opisati
proces (pojavu) pomoc¢u matematickog modela, jer bi mala promjena
(greSka) u mjerenju dovela do velikih promjena u rjeSenju.

Kod obic¢nih diferencijalnih jednadzbi, kao S$to je poznato,
uslov za korektnost Cauchy-evog problema:

V'=f(xy); y(x) =y
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obezbjeduje se ako je f neprekidna funkcija i ako f zadovoljava
Lipschitz-ov uslov s obzirom na promjenljivu y u nekoj oblasti koja

sadrzi tacku (xo; yo) .

Primjena numerickih metoda uzrokuje i nekoliko teorijskih
problema, kao $to su:

- brzina konvergencije,
- nagomilavanje gresaka, i
- numericka stabilnost rjeSenja.

Primjenom numerickih metoda na D] (diferencijalne
jednadzbe) ili sistem DJ fizicki sistem se mozZe opisati sa dovoljnom
tac¢noscu, odnosno mogu se pokazati najvaznije osobine rjeSenja. U
tom slucaju, jednadzbu:

X'(¢)=f(x,1) (1)

posmatramo kao jednadZbu koja opisuje taj fizicki sistem. Shodno
tome, za t kazemo da je vremenska promjenljiva a x fazna, odnosno
prostorna promjenljiva. Broj koordinata x odreduje broj stepena
slobode sistema (1). RjeSenja sistema D] (1) karakteriSu moguca
kretanja sistema u faznom prostoru-vremenu. Buduci da se vrijeme
moZe izraziti kao parametar, moguce je rjeSenje (kretanje) opisati
u faznom prostoru.

Sistem jednadZzbi oblika:
x'(t)=1(x) (2)

nazivamo dinamickim ili autonomnim kada f ne zavisi od t. U tom
slucaju kretanje, pa prema tome i rjeSenje sistema (1) ne zavisi od
t.

OSOBINE AUTONOMNIH SISTEMA

U fizickom smislu dinamicki sistem (2) je matematicki
model kretanja materijalne tacke u n -dimenzionalnom prostoru
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promjenljivih (xl,xz,...,xn) . Ovo kretanje je opisano rjeSenjem

X; :xi(t), tel, i=12,...,n

dinamickog sistema. Bududi da je trajektorija kriva koja opisuje

proces kretanja, onda slijedi da su xile.(t) parametarske
jednadzbe trajektorije.

Integralna kriva rjeSenja X = X(t), t el daje potpunu
informaciju o rjeSenju sistema (2). Medutim neke vazne informacije
se mogu dobiti na osnovu fazne trajektorije rjeSenja, tj. projekcije

rjeSenja integralne krive na fazni prostor R”, paralelno t-osi.
Zbog toga je fazna trajektorija potpuno odredena integralnom
krivom, dok obrnuto nije tacno, jer razlicite integralne krive mogu
imati istu trajektoriju. Fazni prostor je prostor u kome je rjesenje
predstavljeno trajektorijama.

Pri opisivanju fazne trajektorije mora se imati u vidu pravac

fazne trajektorije, tj. pravac kretanja materijalne tacke Xx = X(t)
po faznoj trajektoriji, u pravcu porasta vremenske promjenljive t.
Grafik faznih trajektorija u faznoj ravni se naziva fazni portret.

Dalje, pretpostavljamo da u sistemu (2) funkcija f(x)
zadovoljava Lipschitz-ov uslov s eksponetom 1 u donosu na sve

prostorne promjenljive. Tada slijedi da kroz svaku tacku (xo,to)
prolazijednaisamo jednaintegralnakriva.Zato ne¢emo predstavljati
integralne krive, ve¢ njima odgovarajuce trajektorije.

Definicija 1. Tacka X, € D, za koju vrijedi da je f(xo) #0
naziva se regularnom tackom dinamickog sistema (2).

Kroz svaku regularnu tacku u faznom prostoru prolazi

tacno jedna kriva. Ako je f(xo) =0, onda se tacka x, € D naziva
singularnom tackom ili kriticnom tackom dinamickog sistema (2), jer
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se razlicite fazne trajektorije pribliZavaju toj tacki po razli¢itim
pravcima.

Ako parametarski zadamo tacke na trajektoriji pomocu
nezavisno promjenljive t, onda se dio trajektorije sa tackama

kojima odgovara veca vrijednost parametra od X, naziva pozitivnom
polutrajektorijom.

Ukoliko je sistem autonoman onda podjela trajektorije ne
zavisi od izbora parametra.

Iz sistema (2) slijedi da ako je tacka X ekvilibrijum (polozaj
ravnoteze), tada sistem (2) ima rjeSenje X =X,, a odgovarajuca
fazna trajektorija je upravo tacka X, ufaznom prostoru R".

Ako su f;, i=L2,...,n neprekidno diferencijabilne
funkcije, tada vrijede sljedece izjave:

a) Svaka fazna trajektorija dinamickog sistema (2), razlicita od
polozaja ravnoteZe, je glatka kriva.

b) Ako x=(p(t) rjesenje dinamickog sistema (2), tada je i

funkcija x = ¢ (t) gdje je @ (t) = go(t+c), c = const. rjeSenje
sistema (2).

c)Nekasu x = (p(t) IX=y (t) rjeSenja sistema (2) i neka postoje

f,t, € R za koje je (o(tl)zl//(tz), tada je i go(t)zl//(t+t2—t1)
,teR.

d) Ako je x = (o(xo,t) rjesenje dinamickog sistema (2) koje
zadovoljava pocetni uslov (o(xo,t) =X, tada je

0(xot +15) = 0(9(X051,):12) = (0(X0512)11).

Ako se posmatra kretanje tacke po faznoj trajektoriji rjeSenja

X = (o(t) , onda je osobinom b) izrazena cinjenica da i rjeSenju

X=¢ (t) odgovara ista trajektorija, samo se kretanje tacke odvija

sa kasnjenjem c.
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Iz ¢) slijedi vazan zakljucak: Ili se fazne trajektorije rjesenja
dinamickog sistema (2) ne sijeku ni u jednoj tacki, ili se poklapaju.

Na osnovu d) slijedi da tacka pri kretanju po faznoj trajektoriji
rjeSenja X = go(t), iz pocetnog polozaja X = go(xo,t) moze doci
zavrijeme 1, +1, u polozaj @(X,,t +1,) na dva nacina:

- zavrijeme f, tacka prede u poloZaj go(xo,tl) , @ zatim za vrijeme
t, iz tog polozaja prede u tacku (o(go(xo,tl),tz);
- za vrijeme ¢, tacka prede u polozaj (o(xo,tz), a zatim iz tog

poloZaja za vrijeme #; prede u tacku go((o(xo,tz),tl) .
Fazna trajektorija dinamickog sistema (2) moze biti:

a) Tacka (ekvilibrijum),

b) Glatka kriva bez samopresjeka, kojoj odgovara neperiodicno rjesenje,

C) Zatvorena glatka kriva, kojoj odgovara periodicno rjesenje sa
minimalnim (pozitivnim) periodom.

Dakle, fazna trajektorija, koja nije tacka, otvorena je ili
zatvorena glatka kriva bez samopresjeka. Ako je fazna trajektorija
zatvorena kriva, rjeSenje dinamickog sistema je periodi¢na funkcija
sa minimalnim periodom. To znaci da realni sistem, matematicki
modeliran dinamickim sistemom (2), radi u stabilnom rezimu.

Ukoliko je dinamicki sistem (2) sloZen, treba ga adekvatnom
smjenom promjenljivih transformisati na jednostavniji ekvivalentni
sistem. U tom slucaju fazne trajektorije jednog sistema se
jednoznacno preslikavaju u fazne trajektorije drugog sistema, pri
¢emu se zadrzava njihova topoloska struktura.

OSOBINE SINGULARNIH TACAKA I GRANICNOG CIKLA

U faznom prostoru postoje dva tipa trajektorija. Trajektorije
koje sadrze ili samo singularne tacke ili samo regularne tacke.
Oznacimo sa v singularnu tacku sistema (2). Tada vrijedi sljedeca
teorema.

268



Teorema 1. Trajektorija ili nema nijednu graniénu tacku ili je
granicna tacka polutrajektorije singularna tacka sistema (2).

Tacku ekvilibrijuma v dinamickog sistema (2) nazivamo
asimptotski ~ stabilnom  singularnom  tackom  pozitivne
polutrajektorije, ako se mozZe nacdi (odrediti) otvorena okolina U

oko V(V € U) za koju relacija

tli_)rgx(t,xo,to) =v

uvijek vrijedi, kada je x, e U .

Ako bi sve negativne polutrajektorije izlazile iz odgovarajuce
singularne tacke, a pozitivhe polutrajektorije imale singularnu
tacku ili beskonacnost kao grani¢nu tacku, onda bi proucavanjem
singularnih tacaka bilo lahko odrediti strukturu trajektorija, a
time i prirodu rjeSenja dinamickog sistema (2). Medutim, cesto se
deSava da polutrajektorije postoje i ostaju u ogranicenoj oblasti ali
nemaju grani¢nu tacku. Zbog toga se uvodi pojam granicnog cikla
ili zatvorene orbite.

Definicija 2. Granicni cikl dinamickog sistema (2) je zatvorena
fazna trajektorija G tog sistema za koju postoji okolina sa faznim
trajektorijama po kojima se fazne tacke neograniceno pribliZavaju krivoj
G kada t — o0 ili t = —0.

Razmotrimo jednu pozitivhu polutrajektoriju K : X(t,xo,to)
. Kazemo da tacka P = P(Z) pripada skupu tacaka cikla K, ako se

zasvako € >0 1 T >, moze naci takvo 7 > T daje
|Z—X(r,x0,t0)|<8.

Skup tacaka granicnog cikla K oznaci¢emo sa G(K). Formulisat
¢emo neke osobine skupa tacaka grani¢nog cikla:

- Skup G(K) je zatvoren,
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- Tacke skupa G(K) su povezane.

Teorema 2. Ako P = P (z) nije singularna tacka sistema (2) i

ako P e G(K ) onda sve tacke pozitivne polutrajektorije koje prolaze
tackom P pripadaju skupu G(K).

Dokaz. Ako polutrajektoriju koja prolazi tackom P oznacimo
sa T i ako pretpostavimo da je QO = Q(q) el t.
q = X(tQ’Z’tO) , Za tQ > tP.

Tada za svako &, >0 moZemo nadi 5=5(80,tQ —tp)
takvo da vrijedi

‘x(t0+tQ—tP,W,to)—q‘<g 3)

ako je |w—z| <¢&.Neka sada PeG(K), onda za svako T >,
mozZemo nadi takvo 7 > T, da vrijedi
|x(r,x0,t0)—z| <e.
Ali tada na osnovu (3) imamo da je
ako je 7+, —1p >T , paslijedidai Q€ G(K).

AUTONOMNI SISTEMI SA DVA STEPENA SLOBODE

Budu¢i da se realna predstava o faznom prostoru moze

dobiti za n =2 (ili eventualno za n =3), to se najCes¢e razmatraju
dinamicki sistemi oblika

X'=f(xy); ¥=g(x) (4)

U tom slucaju fazni prostor se naziva fazna ravan. Tip i
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pravac trajektorija dinamickog sistema (4), uz neka ogranicenja za
funkcije fi g mogu se dobiti linearizacijom sistema (4). Zbog toga
je vazno prethodno razmotriti fazni portret linearnog sistema D] sa
konstantnim koeficijentima

x'=ax+by
V' =cx+dy ’ )

gdje pretpostavljamo da je ad —bc # 0, $to nam omogucava da

sistem (5) ima jednu singularnu tacku (0,0). Tacka (0,0) je u
ovom slucaju i ekvilibrijum, tj. izolovana singularna tacka. Pored

epep ee . . 2 .. e vl
ekvilibrijuma, u faznoj ravni R” dobijamo jos Sest razli¢itih Sema.

Prvo pretpostavimo daje b =c=0.Tadajesigurnoa#=0 1 d #0

, zbog ad —bc # 0. Za proizvoljnu pocetnu tacku x, #0, y, #0
iz relacije

@y _dy_, 2

dx a x X
dobijamo da su integralne krive oblika: y =c- |x|a .

Za proizvoljnu pocetnu tacku x, #0, ¥, =0 ili x,=0, y, #0,

rjeSenje je: y, =0 ili x, =0.

a) Ako je O<a<l, dobijamo ¢vor. Ukoliko je

a<0 (t] d <0, jerje a > 0), ¢vor je stabilan, a ako je
a>01d >0 ¢vor je nestabilan (vidjeti slike 1, 2, 3 i 4).

Strukturno ¢vor se karakteriSe ¢injenicom da sve intergralne
krive, sa izuzetkom samo jedne, ulaze i izlaze iz ¢vora sa jednom te
istom tangentom.
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Slika 1.

=1 a<0 |

Slika 2.

yi
D=<c.<1, <0

h

Slika 3.
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Slika 4.
b) Ako je & =1 dobijmo zvijezdu (Slike 5 i 6)

. y
gL, a>=0

A

XY

"

Slika 6.
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c) Ako je a <0 dobijamo sedlo koje je uvijek nestabilno (Slike 7 i

8) Y4

‘2 ] /x
N
Slika 7.

NS
N~

Slika 8.

Razmotrimo sada slu¢aj a=d =a, b=1, c=-1. Ako uvedemo
polarne koordinate, dobijamo

a<0, a>0

LR

L +y
p=—(xx+yy):%:a«/x2+y2:ap,
2p 240x"+y
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oY (Z_x'yj:_l
X+ \x X

d) Ako je o # 0 dobijamo fokus. Tada su intergralne krive date sa
p=Ce™; p=q,—t.

Dakle, fokus je stabilan za & <0 i nestabilan ako je a >0 (Slike
9i10)

Slika 10.
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e) Ako je o =0 dobijamo centar (Slika 11).

'R

a=0

Slika 11.

f) Konacno, razmotrimo slucajkadajea=d =a#0, b=11¢c=0
Tada su rjeSenja oblika

y=Ce"; x=(C +Ct)e” =(C+Ct)y.

Znaci, ako je a <0 singularna tacka je stabilna, a ako je a >0
je nestabilna. U prvom slucaju integralne krive ulaze u singularnu
tacku kada ¢t — oo . Za singularnu tacku kazemo da je degenerisani
¢vor (Slike 1211 13).

d>0
.

o

Slika 12.
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————

Slika 13.

Dinamicki sistem (4) se moZe svesti na jedan od Sest gornjih
slucajeva adekvatnom linearnom transformacijom. Odnosno, sistem
(5) moZemo napisati i u matricnom obliku

X a b
x':Ax;x:{ }A:{ d}
Y ‘ (6)

tj. u obliku (6) linearnog sistema sa konstantnim koeficijentima.
Tada fazni portret zavisi od svojstvenih vrijednosti matrice A; tj. od

korijena karakteristicne jednadzbe det(A — Z,I) =0, pa su moguci
sljedeci slucajevi:

1. Sopstvene vrijednosti su realne i razlicite.

- Ako je A -4, #0 onda sopstvenim vrijednostima A4 14,

matrice A odgovaraju dva linearno nezavisna vektora v, 1v,, pa
opste rjeSenje sistema (6) ima oblik

_ it ot
x=Cye™m +Cv,e™ .
Ako sa (y1 V) ) oznacimo koordinate vektora x u bazi koju formiraju

vektori v; 1V, (afinoj bazi koja u opstem slucaju nije ortogonalna),
parametarske jednadzbe faznih trajektorija su

= Cleilta Vo= Czeﬂzt- (7)
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Dovoljno je razmotrati samo ponasanje u prvom kvadrantu, za
C;201C, 20, jer se trajektorije simetricno preslikavaju na
ostala tri kvadranta.

- Akoje A4, <4, <0onda y; > 01y, = 0 kadat — o0,odnosno

¥ —>© iy, > ako ¢ - —oo. Singularna tacka (0,0) je jeu
tom slucaju stabilan ¢vor (Slika 14).

- Ako je A, >4, >0, tada se trajektorije udaljavaju od tacke

(0,0) kada ¢ — o, pa je ova tacka nestabilan ¢vor.

- Ako je A -4, <0 trajektorije su hiperbole a za tacku (0,0)
kazemo da je sedlo (Slika 15).
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Slika 15.

Dakle, moZemo zakljuciti da se linearnom transformacijom
ne mijenja topoloska struktura integralnih krivih. Odnosno, u
ostalim slucajevima:

- Za A, =pEnipu+#0 singularna tacka je fokus,aza =0 je
centar.

- Za A4, =, =0, singularne tacke su sve tacke fazne ravni R”.
- Ako je Re(ﬂL1 ) <01 Re(ﬂz) <0, singularna tacka je stabilna.
Prethodna diskusija se moZe u nekim slucajevima primjeniti i za
ocjenu ponasanja trajektorija nelinearnog sistema D] (4) u okolini

ekvilibrijuma. Odnosno, uvijek mozemo pretpostaviti da je (0,0)
ekvilibrijum sistema D] (4), tj. da je prethodno izvrS§ena obostrano
jednoznacna transformacija koordinata kojom je ekvilibrijum

sistema DJ (4) preslikan u tacku (0,0) .

GRANICNI CIKL I SINGULARNE LINIJE

Za formiranje faznog portreta dinamickog sistema (4), pored
odredivanja kriticnih tacaka i ispitivanja ponaSanja trajektorija u
okolini tih tacaka, potrebno je i klasifikovati trajektorije. Pri tome se
uocavaju granicni cikli koji dijele faznu ravan na disjunktne oblasti
u kojima se nalaze trajektorije istog tipa.
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Granicni cikli sistema sa dva stepena slobode imaju mnogo
specijalnih osobina koje nam omogucavaju da se odredi struktura
trajektorija kroz ispitivanje singularnih tacaka i odgovarajuceg
grani¢nog cikla. U dvodimenzionalnom slucaju struktura trajektorija
je okarakterisana osobinom da se one ne mogu uzajamno sjeci.

Posmatrajuc¢i fazne trajektorije sistema DJ (4) u blizini
grani¢nog cikla, uocavamo sljedece tipove grani¢nog cikla:

- Granicni cikl je stabilan, ako se fazne trajektorije pribliZavaju
grani¢cnom ciklu kada # — oo (sa unutrasnje i spoljasnje strane).

- Granicni cikl je nestabilan, ako se fazne trajektorije priblizavaju
granicnom ciklu kada ¢#— —oo (sa unutrasnje i spoljasnje
strane).

- Granicni cikl je polustabilan, ako se fazne trajektorije priblizavaju
grani¢cnom ciklu sa jedne strane kada ¢ — o0 a sa druge strane
kada ¢t — —o0.

MozZemo zapaziti da se u slucaju nestabilnog grani¢nog cikla
sve trajektorije udaljavaju od njegakada ¢ — o0 . Akod polustabilnog
grani¢nog cikla fazne trajektorije se priblizavaju granicnom ciklu
iznutra (spolja) a udaljavaju se od njega spolja (iznutra).

Dakle, raspored zatvorenih integralnih krivih ima veliki
znacaj za odredivanje strukture integralnih krivih (ili trajektorija).
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