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ANALIZA STRUKTURE INTEGRALNIH KRIVIH
NELINEARNIH DIFERENCIJALNIH JEDNADŽBI

Sažetak

Skoro sve pojave u prirodi, odnosno u tehnici i fizici mogu biti
opisane pomoću diferencijalnih jednadžbi ili sistema diferencijalnih jednadžbi.
Matematički modeli tih pojava su u prošlosti bili idealizovani iz razloga da
se dobije diferencijalna jednadžba ili sistem diferencijalnih jednadžbi rješiv u
zatvorenomobliku.Danasrazmatramopojavekojesenajčešćeopisujunelinearnim
diferencijalnim jednadžbama, tj. jednadžbama koje najčešće nisu rješive u
zatvorenom obliku. Zbog toga je od posebnog interesa da se okarakteriziraju
svojstva rješenja nelinearnih diferencijalnih jednadžbi i sistema diferencijalnih
jednaždbi, kao i numeričke metode koje omogućavaju aproksimaciju tih rješenja.
U ovom radu je data analiza rješenja nelinearnih diferencijalnih jednadžbi ili
sistema jednadžbi na osnovu strukture njenih integralnih krivih.

Ključne riječi: Trajektorija, fazna ravan, dinamički sistem, stabilnost,
granični cikl.

THE ANALYSIS OF STRUCTURE OF AN INTEGRATE
CURVES NONLINEAR DIFFERENTIAL EQUATIONS

Summary

Almost all phenomena in nature and in engineering and physics
can be described by differential equations or systems of differential
equations. Mathematical models of these phenomena have been idealized in the
past due to get a differential equation or system of differential equations solvable
in closed form. Today we consider the phenomena which are typically nonlinear
differential equations, the equations which are usually not solvable in closed
form. It is therefore of particular interest to characterize properties of solutions
of nonlinear differential equations and systems of differential equations and
numerical methods that allow an approximation of these solutions. In this paper
was given an analysis of solutions of nonlinear differential equations or systems
of equations based on the structure of its integral curves.

Key words: trajectory, phase plane, dynamical system, stability,
boundary cycle.



264

UVOD
Skoro sve pojave u prirodi mogu se opisati diferencijalnim

jednadžbama ili sistemima diferencijalnih jednadžbi. Matematički
modeli u prošlosti su bili idealizovani u smislu da se dobije
diferencijalna jednadžba ili sistem diferencijalnih jednadžbi koji
je rješiv u zatvorenom obliku. Danas se razmatraju pojave koje se
opisuju nelinearnim diferencijalnim jednadžbama, tj. jednadžbama
koje nisu rješive u zatvorenom obliku. U tom slučaju je od posebnog
značaja da se okarakteriziraju osobine rješenja nelinearnih
diferencijalnih jednadžbi kao i numeričkemetode koje omogućavaju
aproksimaciju tih rješenja.

Prije same primjene neke numeričke metode treba
prethodno provjeriti da li je dati problem „pravilno formulisan”, tj.
da li smo pomoću matematičkog modela pravilno i potpuno opisali
posmatranu pojavu.

Za problem zadan običnim diferencijalnim jednadžbama ili
parcijalnim diferencijalnim jednadžbama kažemo da je „korektno”
postavljen, tj. formulisan, u klasi funcija F, ako su zadovoljena
sljedeća tri uslova:

10 Postoji rješenje u klasi F, tzv. problem „egzistencije „ rješenja;
20 Rješenje je jedinstveno u klasi F, tzv. problem „jedinstvenosti”
rješenja;
30 Rješenje neprekidno zavisi od datih uslova-podataka (od početnih
uslova, rubnih uslova, itd.), tzv. problem „stabilnosti” rješenja.

Korektnost postavljenog problema je naročito važna za
njegovu primjenu, jer postavljeni problem opisuje neku fizičku
pojavu. Uslovom 30 se obezbjeđuje da rješenje problema ne zavisi
bitno od grešaka koje se uvijek javljaju prilikom mjerenja (dopunski
uslovi i parametri) posmatrane fizičke pojave. Ako rješenje problema
nije neprekidna funkcija tih parametara, ne bismo mogli opisati
proces (pojavu) pomoćumatematičkogmodela, jer bimala promjena
(greška) u mjerenju dovela do velikih promjena u rješenju.

Kod običnih diferencijalnih jednadžbi, kao što je poznato,
uslov za korektnost Cauchy-evog problema:

( ) ( )0 0, ;  y f x y y x y′ = =
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obezbjeđuje se ako je f neprekidna funkcija i ako f zadovoljava
Lipschitz-ov uslov s obzirom na promjenljivu y u nekoj oblasti koja

sadrži tačku ( )0 0;x y .

Primjena numeričkih metoda uzrokuje i nekoliko teorijskih
problema, kao što su:

- brzina konvergencije,
- nagomilavanje grešaka, i
- numerička stabilnost rješenja.

Primjenom numeričkih metoda na DJ (diferencijalne
jednadžbe) ili sistem DJ fizički sistem se može opisati sa dovoljnom
tačnošću, odnosno mogu se pokazati najvažnije osobine rješenja. U
tom slučaju, jednadžbu:

( ) ( ),t t′ =x f x   (1)

             
posmatramo kao jednadžbu koja opisuje taj fizički sistem. Shodno
tome, za t kažemo da je vremenska promjenljiva a x fazna, odnosno
prostorna promjenljiva. Broj koordinata x određuje broj stepena
slobode sistema (1). Rješenja sistema DJ (1) karakterišu moguća
kretanja sistema u faznom prostoru-vremenu. Budući da se vrijeme
može izraziti kao parametar, moguće je rješenje (kretanje) opisati
u faznom prostoru.

Sistem jednadžbi oblika:

( ) ( )t′ =x f x                  (2) 

             
nazivamo dinamičkim ili autonomnim kada f ne zavisi od t. U tom
slučaju kretanje, pa prema tome i rješenje sistema (1) ne zavisi od
t.

OSOBINE AUTONOMNIH SISTEMA

U fizičkom smislu dinamički sistem (2) je matematički
model kretanja materijalne tačke u n -dimenzionalnom prostoru
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promjenljivih ( )1 2, , , nx x xK . Ovo kretanje je opisano rješenjem

( ) ,   ,   1,2, ,i ix x t t I i n= ∈ = K  

        
dinamičkog sistema. Budući da je trajektorija kriva koja opisuje

proces kretanja, onda slijedi da su ( )i ix x t= parametarske
jednadžbe trajektorije.

Integralna kriva rješenja ( ) ,   t t I= ∈x x daje potpunu
informaciju o rješenju sistema (2). Međutim neke važne informacije
se mogu dobiti na osnovu fazne trajektorije rješenja, tj. projekcije

rješenja integralne krive na fazni prostor nR , paralelno t-osi.
Zbog toga je fazna trajektorija potpuno određena integralnom
krivom, dok obrnuto nije tačno, jer različite integralne krive mogu
imati istu trajektoriju. Fazni prostor je prostor u kome je rješenje
predstavljeno trajektorijama.

Pri opisivanju fazne trajektorije mora se imati u vidu pravac

fazne trajektorije, tj. pravac kretanja materijalne tačke ( )t=x x
po faznoj trajektoriji, u pravcu porasta vremenske promjenljive t.
Grafik faznih trajektorija u faznoj ravni se naziva fazni portret.

Dalje, pretpostavljamo da u sistemu (2) funkcija ( )f x
zadovoljava Lipschitz-ov uslov s eksponetom 1 u donosu na sve

prostorne promjenljive. Tada slijedi da kroz svaku tačku ( )0 0,x t
prolazi jedna i samo jedna integralnakriva.Zatonećemopredstavljati
integralne krive, već njima odgovarajuće trajektorije.

Definicija 1. Tačka 0 D∈x , za koju vrijedi da je ( )0 0≠f x
naziva se regularnom tačkom dinamičkog sistema (2).

Kroz svaku regularnu tačku u faznom prostoru prolazi

tačno jedna kriva. Ako je ( )0 0=f x , onda se tačka 0 D∈x naziva
singularnom tačkom ili kritičnom tačkom dinamičkog sistema (2), jer
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se različite fazne trajektorije približavaju toj tački po različitim
pravcima.

Ako parametarski zadamo tačke na trajektoriji pomoću
nezavisno promjenljive t, onda se dio trajektorije sa tačkama

kojima odgovara veća vrijednost parametra od 0x naziva pozitivnom
polutrajektorijom.

Ukoliko je sistem autonoman onda podjela trajektorije ne
zavisi od izbora parametra.

Iz sistema (2) slijedi da ako je tačka 0x ekvilibrijum (položaj

ravnoteže), tada sistem (2) ima rješenje 0=x x , a odgovarajuća

fazna trajektorija je upravo tačka 0x u faznom prostoru nR .

Ako su ,   1,2, ,if i n= K neprekidno diferencijabilne
funkcije, tada vrijede sljedeće izjave:

a) Svaka fazna trajektorija dinamičkog sistema (2), različita od
položaja ravnoteže, je glatka kriva.

b) Ako ( )tϕ=x rješenje dinamičkog sistema (2), tada je i

funkcija ( )tϕ∗=x , gdje je ( ) ( )t t cϕ ϕ∗ = + , c = const. rješenje
sistema (2).

c)Neka su ( )tϕ=x i ( )tψ=x rješenja sistema (2) i nekapostoje

1 2,t t ∈R za koje je ( ) ( )1 2t tϕ ψ= , tada je i ( ) ( )2 1t t t tϕ ψ= + −
, t∈R .

d) Ako je ( )0,tϕ=x x rješenje dinamičkog sistema (2) koje

zadovoljava početni uslov ( )0 0,tϕ =x x , tada je

  ( ) ( )( ) ( )( )0 1 2 0 1 2 0 2 1, , , , ,t t t t t tϕ ϕ ϕ ϕ ϕ+ = =x x x .

Ako se posmatra kretanje tačke po faznoj trajektoriji rješenja

( )tϕ=x , onda je osobinom b) izražena činjenica da i rješenju

( )tϕ∗=x odgovara ista trajektorija, samo se kretanje tačke odvija
sa kašnjenjem c.
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Iz c) slijedi važan zaključak: Ili se fazne trajektorije rješenja
dinamičkog sistema (2) ne sijeku ni u jednoj tački, ili se poklapaju.

Na osnovu d) slijedi da tačka pri kretanju po faznoj trajektoriji

rješenja ( )tϕ=x , iz početnog položaja ( )0,tϕ=x x može doći

za vrijeme 1 2t t+ u položaj ( )0 1 2,t tϕ +x na dva načina:

- za vrijeme 1t tačka pređe u položaj ( )0 1,tϕ x , a zatim za vrijeme

2t iz tog položaja pređe u tačku ( )( )0 1 2, ,t tϕ ϕ x ;

- za vrijeme 2t tačka pređe u položaj ( )0 2,tϕ x , a zatim iz tog

položaja za vrijeme 1t pređe u tačku ( )( )0 2 1, ,t tϕ ϕ x .
Fazna trajektorija dinamičkog sistema (2) može biti:

a) Tačka (ekvilibrijum),
b) Glatka kriva bez samopresjeka, kojoj odgovara neperiodično rješenje,
c) Zatvorena glatka kriva, kojoj odgovara periodično rješenje sa
minimalnim (pozitivnim) periodom.

Dakle, fazna trajektorija, koja nije tačka, otvorena je ili
zatvorena glatka kriva bez samopresjeka. Ako je fazna trajektorija
zatvorena kriva, rješenje dinamičkog sistema je periodična funkcija
sa minimalnim periodom. To znači da realni sistem, matematički
modeliran dinamičkim sistemom (2), radi u stabilnom režimu.

Ukoliko je dinamički sistem (2) složen, treba ga adekvatnom
smjenom promjenljivih transformisati na jednostavniji ekvivalentni
sistem. U tom slučaju fazne trajektorije jednog sistema se
jednoznačno preslikavaju u fazne trajektorije drugog sistema, pri
čemu se zadržava njihova topološka struktura.

OSOBINE SINGULARNIH TAČAKA I GRANIČNOG CIKLA

U faznom prostoru postoje dva tipa trajektorija. Trajektorije
koje sadrže ili samo singularne tačke ili samo regularne tačke.
Označimo sa v singularnu tačku sistema (2). Tada vrijedi sljedeća
teorema.
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Teorema 1. Trajektorija ili nema nijednu graničnu tačku ili je
granična tačka polutrajektorije singularna tačka sistema (2).

Tačku ekvilibrijuma v dinamičkog sistema (2) nazivamo
asimptotski stabilnom singularnom tačkom pozitivne
polutrajektorije, ako se može naći (odrediti) otvorena okolina U

oko ( )U∈v v za koju relacija

   ( )0 0lim , ,
t

t t
→∞

=x x v

uvijek vrijedi, kada je 0 U∈x .

Ako bi sve negativne polutrajektorije izlazile iz odgovarajuće
singularne tačke, a pozitivne polutrajektorije imale singularnu
tačku ili beskonačnost kao graničnu tačku, onda bi proučavanjem
singularnih tačaka bilo lahko odrediti strukturu trajektorija, a
time i prirodu rješenja dinamičkog sistema (2). Međutim, često se
dešava da polutrajektorije postoje i ostaju u ograničenoj oblasti ali
nemaju graničnu tačku. Zbog toga se uvodi pojam graničnog cikla
ili zatvorene orbite.

Definicija 2. Granični cikl dinamičkog sistema (2) je zatvorena
fazna trajektorija G tog sistema za koju postoji okolina sa faznim
trajektorijama po kojima se fazne tačke neograničeno približavaju krivoj
G kada t →∞ ili .t →−∞

Razmotrimo jednu pozitivnu polutrajektoriju ( )0 0: , ,K t tx x

. Kažemo da tačka ( )P P z= pripada skupu tačaka cikla K, ako se

za svako 00  i  T t> >ε može naći takvo T>τ da je

   ( )0 0, ,z t− <x xτ ε .

Skup tačaka graničnog cikla K označićemo sa G(K). Formulisat
ćemo neke osobine skupa tačaka graničnog cikla:

- Skup G(K) je zatvoren,
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- Tačke skupa G(K) su povezane.

Teorema 2. Ako P = P (z) nije singularna tačka sistema (2) i

ako ( )P G K∈ , onda sve tačke pozitivne polutrajektorije koje prolaze
tačkom P pripadaju skupu G(K).

Dokaz. Ako polutrajektoriju koja prolazi tačkom P označimo

sa T i ako pretpostavimo da je ( )Q Q T= ∈q , tj.

( )0, ,Qt z t=q x ,  za .Q Pt t>

Tada za svako 0 0>ε možemo naći ( )0, Q Pt t= −δ δ ε
takvo da vrijedi

( )0 0, ,Q Pt t t t+ − − <x w q ε   (3) 

           

ako je − <w z ε . Neka sada ( )P G K∈ , onda za svako PT t>
možemo naći takvo T>τ , da vrijedi

   ( )0 0, ,t − <x x zτ ε .

Ali tada na osnovu (3) imamo da je

   ( )0 0 0, ,Q Pt t t+ − − <x x qτ ε

ako je Q Pt t T+ − >τ , pa slijedi da i ( ).Q G K∈
       
AUTONOMNI SISTEMI SA DVA STEPENA SLOBODE

Budući da se realna predstava o faznom prostoru može
dobiti za 2n = (ili eventualno za 3n = ), to se najčešće razmatraju
dinamički sistemi oblika

( ) ( ), ;   , .x f x y y g x y′ ′= =   (4) 

           
U tom slučaju fazni prostor se naziva fazna ravan. Tip i
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pravac trajektorija dinamičkog sistema (4), uz neka ograničenja za
funkcije f i g mogu se dobiti linearizacijom sistema (4). Zbog toga
je važno prethodno razmotriti fazni portret linearnog sistema DJ sa
konstantnim koeficijentima

   

,
x ax by

y cx dy

′ = + ⎫
⎬′ = + ⎭                                  (5) 

              

 
gdje pretpostavljamo da je 0ad bc− ≠ , što nam omogućava da

sistem (5) ima jednu singularnu tačku ( )0,0 . Tačka ( )0,0 je u
ovom slučaju i ekvilibrijum, tj. izolovana singularna tačka. Pored

ekvilibrijuma, u faznoj ravni 2R dobijamo još šest različitih šema.

Prvo pretpostavimo da je 0b c= = . Tada je sigurno 0  i  0a d≠ ≠

, zbog 0ad bc− ≠ . Za proizvoljnu početnu tačku 0 00,   0x y≠ ≠
iz relacije

   
dy d y y

dx a x x
= ⋅ = ⋅α

dobijamo da su integralne krive oblika: y c x= ⋅ α
.

Za proizvoljnu početnu tačku 0 0 0 00,   0  ili  0,   0x y x y≠ = = ≠ ,

rješenje je: 0 00  ili  0y x= = .

a) Ako je 0 1< <α , dobijamo čvor. Ukoliko je

( )0 tj. 0,  jer je 0a d< < >α , čvor je stabilan, a ako je
0 i 0a d> > čvor je nestabilan (vidjeti slike 1, 2, 3 i 4).

Strukturno čvor se karakteriše činjenicom da sve intergralne
krive, sa izuzetkom samo jedne, ulaze i izlaze iz čvora sa jednom te
istom tangentom.
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Slika 1.

    

    

Slika 2.

Slika 3.



273

                 

       

Slika 4.
b) Ako je 1=α dobijmo zvijezdu (Slike 5 i 6)

Slika 5.

    

       

Slika 6.
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c) Ako je 0<α dobijamo sedlo koje je uvijek nestabilno (Slike 7 i
8)

Slika 7.

   

       

Slika 8.

Razmotrimo sada slučaj ,  1,  1a d b c= = = = −α . Ako uvedemo
polarne koordinate, dobijamo

( ) 2 2

2 2

1

2 2

xx yy
xx yy x y

x y

′ ′+′ ′ ′= + = = + =
+

ρ α αρ
ρ

,



275

2

2 2 2
1

x y x y

xx y x

′⎛ ⎞′ = − = −⎜ ⎟+ ⎝ ⎠
ϕ .

d) Ako je 0≠α dobijamo fokus. Tada su intergralne krive date sa

0;  tCe t= = −αρ ϕ ϕ .

Dakle, fokus je stabilan za 0<α i nestabilan ako je 0>α (Slike
9 i 10)

Slika 9.

  
Slika 10.
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e) Ako je 0=α dobijamo centar (Slika 11).

Slika 11.

f) Konačno, razmotrimo slučaj kada je 0,  1 i 0a d b c= = ≠ = =α
Tada su rješenja oblika

( ) ( )1 1;  t ty Ce x C Ct e C Ct y= = + = +α α .

Znači, ako je 0<α singularna tačka je stabilna, a ako je 0>α
je nestabilna. U prvom slučaju integralne krive ulaze u singularnu
tačku kada t →∞ . Za singularnu tačku kažemo da je degenerisani
čvor (Slike 12 i 13).

Slika 12.
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Slika 13.

Dinamički sistem (4) se može svesti na jedan od šest gornjih
slučajeva adekvatnom linearnom transformacijom. Odnosno, sistem
(5) možemo napisati i u matričnom obliku

  ;  ;  
x a b

A A
y c d

⎡ ⎤ ⎡ ⎤′ = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x x x     

         (6)
tj. u obliku (6) linearnog sistema sa konstantnim koeficijentima.
Tada fazni portret zavisi od svojstvenih vrijednosti matrice A; tj. od

korijena karakteristične jednadžbe ( )det 0A I− =λ , pa su mogući
sljedeći slučajevi:

1. Sopstvene vrijednosti su realne i različite.

- Ako je 1 2 0⋅ ≠λ λ onda sopstvenim vrijednostima 1 2 i λ λ
matrice A odgovaraju dva linearno nezavisna vektora 1 2 i v v , pa
opšte rješenje sistema (6) ima oblik

1 2
1 1 2 2

t tC v e C v e= +x λ λ .

Ako sa ( )1 2,y y označimo koordinate vektora x u bazi koju formiraju

vektori 1 2 i v v (afinoj bazi koja u opštem slučaju nije ortogonalna),
parametarske jednadžbe faznih trajektorija su

1 2
1 1 2 2,  t ty C e y C e= =λ λ .           (7) 
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Dovoljno je razmotrati samo ponašanje u prvom kvadrantu, za

1 20 i 0C C≥ ≥ , jer se trajektorije simetrično preslikavaju na
ostala tri kvadranta.

- Ako je 2 1 0< <λ λ onda 1 20 i 0y y→ → kada t →∞ , odnosno

1 2 i y y→∞ →∞ ako t →−∞ . Singularna tačka ( )0,0 je je u
tom slučaju stabilan čvor (Slika 14).

Slika 14.

- Ako je 2 1 0> >λ λ , tada se trajektorije udaljavaju od tačke

( )0,0 kada t →∞ , pa je ova tačka nestabilan čvor.

- Ako je 1 2 0⋅ <λ λ trajektorije su hiperbole a za tačku ( )0,0
kažemo da je sedlo (Slika 15).
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Slika 15.

Dakle, možemo zaključiti da se linearnom transformacijom
ne mijenja topološka struktura integralnih krivih. Odnosno, u
ostalim slučajevima:

- Za 1,2  i 0= ± ≠λ μ η μ singularna tačka je fokus, a za 0=μ je
centar.

- Za 1 2 0= =λ λ , singularne tačke su sve tačke fazne ravni 2R .

- Ako je ( ) ( )1 2Re 0 i Re 0< <λ λ , singularna tačka je stabilna.

Prethodna diskusija se može u nekim slučajevima primjeniti i za
ocjenu ponašanja trajektorija nelinearnog sistema DJ (4) u okolini

ekvilibrijuma. Odnosno, uvijek možemo pretpostaviti da je ( )0,0
ekvilibrijum sistema DJ (4), tj. da je prethodno izvršena obostrano
jednoznačna transformacija koordinata kojom je ekvilibrijum

sistema DJ (4) preslikan u tačku ( )0,0 .

GRANIČNI CIKL I SINGULARNE LINIJE

Za formiranje faznog portreta dinamičkog sistema (4), pored
određivanja kritičnih tačaka i ispitivanja ponašanja trajektorija u
okolini tih tačaka, potrebno je i klasifikovati trajektorije. Pri tome se
uočavaju granični cikli koji dijele faznu ravan na disjunktne oblasti
u kojima se nalaze trajektorije istog tipa.
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Granični cikli sistema sa dva stepena slobode imaju mnogo
specijalnih osobina koje nam omogućavaju da se odredi struktura
trajektorija kroz ispitivanje singularnih tačaka i odgovarajućeg
graničnog cikla. U dvodimenzionalnom slučaju struktura trajektorija
je okarakterisana osobinom da se one ne mogu uzajamno sjeći.

Posmatrajući fazne trajektorije sistema DJ (4) u blizini
graničnog cikla, uočavamo sljedeće tipove graničnog cikla:

- Granični cikl je stabilan, ako se fazne trajektorije približavaju
graničnom ciklu kada t →∞ (sa unutrašnje i spoljašnje strane).

- Granični cikl je nestabilan, ako se fazne trajektorije približavaju
graničnom ciklu kada t →−∞ (sa unutrašnje i spoljašnje
strane).

- Granični cikl je polustabilan, ako se fazne trajektorije približavaju
graničnom ciklu sa jedne strane kada t →∞ a sa druge strane
kada t →−∞ .

Možemo zapaziti da se u slučaju nestabilnog graničnog cikla
sve trajektorijeudaljavajuodnjegakada t →∞ . Akodpolustabilnog
graničnog cikla fazne trajektorije se približavaju graničnom ciklu
iznutra (spolja) a udaljavaju se od njega spolja (iznutra).

Dakle, raspored zatvorenih integralnih krivih ima veliki
značaj za određivanje strukture integralnih krivih (ili trajektorija).
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