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PERIODIČNA RJEŠENJA PROIZVOLJNE DUŽINE
CJELOBROJNE DIFERENTNE JEDNADŽBE

Sažetak

U ovom radu razmatrana je jedna cjelobrojna diferentna jednadžba oblika:

(1)
gdje označava najmanji cijeli broj koji nije manji od . Za vrijednost parametra

posmatrana jednadžba je linearna, i ne razmatra se u ovom radu. Za

, (1) postaje oblika

poznata pod nazivom „ iteracija“. Autori su dokazali ultimativnu rekurentnu

osobinu za cjelobrojnu diferentnu jednadžbu (1) za sve početne vrijednosti i

sve vrijednosti parametra .
Posmatrana cjelobrojna diferentna jednadžba (1) se može transformisati u

sistem prvog reda sa dvije promjenljive transformacijom
. Jednostavnost transformacije (preslikavanja) od T ne daje nagovještaj složenosti koju
pokazuje „rasturanje“ na dijagramu kod nekih rješenja.

Ključne riječi: diferentna jednadžba, periodična rješenja, samosličnost
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Summary

In this work we considered integer difference equation of second order of forms:
,
(1)

where denotes minimal integer which is not lower than of . For the parameter

value this equation is linear, and that case is not considered in this work. For

, equation (1) becomes

which is known as „ iteration“. Authors have proved the recurrent characteristic

for the integer difference equation (1) for all starting values and all

parametar values .
The given integer difference equation (1) can be transformed to the first order

system with two variables by using transformation .
Simplicity of transformation (mappings) of T do not give us signs of complexity which
shows „ messing up “on the diagram at some solutions.

Key words: difference equation, periodic solutions, self-similarity

1. Uvod

Nelinearnediferentnejednadžbe,odnosnosistemidiferentnih
jednadžbi imaju sve širu primjenu umnogimpodručjima nauke, prije
svega u matematičkoj biologiji, epidemiologiji i ekonomiji, gdje

( )1n + -va generacija (ili stanje) zavisi od n prethodnih generacija
ili stanja. Imajući na umu značaj proučavanja diferentnih jednadžbi
i sistema diferentnih jednadžbi, u ovom radu smo se odlučili da
detaljnije proučimo ponašanje periodičnih rješenja proizvoljne
dužine nelinearne cjelobrojne diferentne jednadžbe drugog reda

.
Naravno, sistem prvog reda koji predstavlja ovu jednadžbu

dokazano ima samoslična i haotična rješenja u cjelobrojnoj ravni

(vidi [ ]1 ).
U radu autori dokazuju da su sva rješenja nelinearne

cjelobrojne diferentne jednadžbe drugog reda
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periodična.
Analizirajmo nelinearnu diferentnu jednadžbu drugog reda

(1.1)
gdje označava najmanji cijeli broj koji nije manji od . Poznato
je da za posmatrana jednadžba je linearna, pa nećemo
razmatrati te vrijednosti u ovom radu. Pored prirodne generalizacije
na diskretni prostor, postoje bar tri razloga zašto je (1.1) interesantna.

Prvo, za , (1.1) postaje

varijanta drugog reda poznata pod nazivom „ iteracija“.
Trenutno, koliko znamo, ultimativna konvergencija ka
iteracije ostaje nedokazana hipoteza. Nasuprot tome, mi ćemo
dokazati ultimativnu rekurentnu osobinu (1.1) za sve početne
vrijednosti i sve vrijednosti parametra . Početno
tvrđenje je da je rješenje uvijek rekurentno. Štaviše, rješenja (1.1)
mogu biti periodična sa proizvoljnom dužinom (Teoreme 2.2, 3.2).

Drugo, metod korišten za zaključak o periodičnosti svih
rješenja (1.1) je elegantan i potencijalno šire upotrebljiv. Bez ovog
metoda ne bismo čak mogli ni dokazati da su rješenja specijalnog
slučaja (1.2) jednadžbe (1.1) ograničena (vidi ).

Treće, posmatrana diferentna jednadžba (1.1) se može
transformisati u sistem prvog reda sa dvije promjenljive
transformacijom . Jednostavnost
transformacije (preslikavanja) od T ne daje nagovještaj složenosti
koju pokazuje „rasturanje“ na dijagramu kod nekih rješenja. Vidjeti
figure 4.1- 4.4.

1.1 Samosličnost, fraktali i haos

Teorema 1.1. Neka je kompletan metrički prostor. Neka
su kontrakcije metričkog prostora . Tada
postoji jedinstven neprazan kompaktan podskup skupa takav da je

.
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Definicija 1.1. Skup iz prethodne teoreme nazivamo
samosličnim s obzirom na (vidi 6�).

Neformalno rečeno, objekat je samosličan ako se može
razložiti na dijelove koji su umanjena kopija cjeline. Najpoznatiji
primjer samosličnih skupova su fraktali. Fraktale karakteriše (vidi
7�):
(i) Neki oblik samosličnosti (tačne, približne ili statističke),
(ii) Fina struktura na svakom nivou uvećanja,
(iii) Prevelika nepravilnost da bi se mogli opisati klasičnim

geometrijskim jezikom,
(iv) Obično je Hausdorff-ova dimenzija veća od topološke1,
(v) U većini slučajeva je fraktal definisan jednostavnom

rekurentnom relacijom.
Prirodni oblici koji pokazuju fraktalne karakteristike su:

oblaci, morska obala, munje, planinski lanci, snježne pahuljice,
neke vrste biljaka itd.

Teorija haosa se bavi pojavama specifičnog tipa
nepredvidljivosti, čije ponašanje je determinističko sa velikom
osjetljivošću na početne uslove. Naime, male promjene početnih
uslova mogu dovesti do ogromnih promjena u ponašanju pojave.
Treba istaći da takvi procesi nisu stohastički, iako se ponekad tako
čini. To su u potpunosti deterministički procesi koji podliježu
određenim fizičkim i matematičkim zakonima i kao takvi potpuno
su predvidljivi uz savršen uvid u početne uslove. Klasičan primjer
je vremenska prognoza koju je moguće sa zadovoljavajućom
preciznošću dati za otprilike sedam dana unaprijed, iako bi teoretski
ona mogla da se da za bilo koji dan u budućnosti (uz ignoriranje
efekata Heisenberg-ovog principa neodređenosti).

1.2 iteracija
problem (poznat kao Collatz-ov problem, Kakutani-

jev problem) razmatra iteracije funkcije , definisane sa

1 Termin fraktal je uveo B. Mandelbrot Š5Ć. On je definisao fraktal kao skup
čija je Hausdorff-ova dimenzija strogo veća od topološke. Ovakva definicija,
međutim, isključuje brojne skupove koji imaju „fraktalne“ karakteristike.
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Hipoteza (još uvijek nedokazana) je da za svaki prirodan broj
postoji takav da je , gdje koristimo oznake

.
Stavljajući recimo , dobijamo niz iteracija

Vrijednosti 1 i 2 se dalje cikličnoponavljaju.Mnoštvo primjera (sa
različitim početnim vrijednostima ) daje opravdanje za ovu hipotezu.

Svako rješenje diferentne jednadžbe

sa početnim uslovom je eventualno periodično, sa
period-2 rješenjem .

Pregled važnijih rezultata vezanih za problem je dat u 8�.

1. Kvalitativno ponašanje rješenja

Označimo sa tačke u cjelobrojnoj ravni , i neka realni
parametar zadovoljava . Transformacijom

se jednadžba (1.1) svodi na sistem diferentnih jednadžbi prvog reda.

Primjedba 2.1. Niz koji se pojavljuje kao druga
koordinata u svakom izrazu je isti niz kao i onaj generisan sa
(1.1) za .

Prvi utisak o rotacionom kretanju rješenja je dobijen iz stepena
matrice , Jakobijeve matrice preslikavanja izuzimajući

uticaj funkcije . Zbog , ima kompleksne sopstvene

vrijednosti. Nakon dijagonalizacije A dobijamo
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Identitet predstavlja
familiju invarijantnih elipsi za linearnu
jednačinu. Slika2.1prikazujeelipsu determinisanu

sa i ,kaoiprvihšestiteracijaod primijenjenihna

Sve ove tačke leže na elipsi jer
je funkcija neaktivna. Prvi neparan na koji funkcija ima
uticaj je , i očekujemo da ne leži na ovoj elipsi.
Zaista, .

Kretanje u smjeru kazaljke na satu u iteracija od još je
jasnije pogledom na vektorsko polje na slici 2.2 za . Svaki
usmjereni segment u ima oblik i pokazuje
prema . Ovo se jasno vidi na slici 2.2 za orbitu sa početnom
tačkom . Vektorsko polje je podijeljeno u četiri kvadranta sa
granicama i step-lokusom

. Svaki linearni segment ovog lokusa uključuje
gornju lijevu krajnju tačku a isključuje donju desnu krajnju tačku.
Kvadranti su određeni znakom komponenti vektora pravca:

ili . Uopšte, rotacija u smjeru kazaljke
na satu i grube eliptičke orbite lako se dobijaju za sve vrijednosti

i početni uslov .

TEOREMA 2.2. Za različite od nule racionalne gdje su
i uzajamno prosti, broj različitih vrijednosti u rješenju može biti

proizvoljno velik u zavisnosti od početnih uslova.

Dokaz. Posmatrajući primjer sa Slike 2.1 biramo početne
uslove tako da funkcija bude neaktivna željeni broj puta, čime
nelinearna jednačina (1.1) praktično postaje linearna. Stavimo

sa po želji velikim pozitivnim . Kao i ranije, sa
označimo matricu odgovarajućeg linearnog sistema. Indukcijom

se može pokazati da je
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Slika 2.1. .

Slika 2.2. .

Posljedica uzimanja relativno prostih i je da nikada neće dijeliti
za ; koeficijent uz u je uvijek 1. Uzastopna primjena

matrice na početni vektor daje opštu formu prvih
iteracija: . One su sve različite jer najveći stepen od
koji dijeli svaku je različit.

Nasuprot tome, sljedeći primjer pokazuje da, ako nije
racionalan, ne slijedi da postoji proizvoljno mnogo različitih
iteracija jednostavno zbog toga što početna vrijednost može biti
proizvoljno velika (vidjeti sliku 4.1).
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Primjer 2.3. Neka je tj.
u (2.2), ranije. Neka je za . Sa

ovim početnim uslovima sva rješenja imaju period . Rješenja su
prikazana ispod za .

, , , , , ,
, , , , , ,
, , , , , ,
, , , , , ,
, , , ,

Treba primijetiti vezu između i : ponekad je
, a ponekad . Lako je vidjeti da je , gdje

označava najveći cijeli broj koji nije veći od . Uz malo više
računa, koristeći činjenicu da je , možemo dokazati
da je ako i samo ako je , inače je

.

2. Periodičnost rješenja

Involucija je preslikavanje takvo da je kvadrat od identitet,
tj. . Sljedeća lema obezbjeđuje osnovni aparat pri
dokazivanju da su sva rješenja (1.1) periodična.

LEMA 3.1. Neka je definisano kao u (2.1) ranije, i
. Involucija

zadovoljava i . To povlači da su preslikavanja
i involucije.

Dokaz. Imamo

Množenjem sa lijeve i desne strane sa dobijamo
, što koristimo za dokaz da je . Dakle,

je involucija, a slično dokazujemo da su involucije i , , i .

Rješenje jednačine (1.1) zovemo invarijantnim nad ako
skup tačaka
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zadovoljava . Geometrijski, za , ovo znači

da je graf iteracija simetričan u odnosu na pravu , npr. vidjeti

sliku 2.2. Za racionalno numerički eksperimenti su pokazali

da je ova invarijantnost preovlađujuća, tvrdimo da se ona javlja

sa vjerovatnoćom 1. Vidjeti posljedicu teoreme 3.2. Za rješenja

invarijantna nad lema dokazuje periodičnost odmah:

Teorem 3.2. Za sva rješenja (1.1) su periodična.

Dokaz. Neka rješenja (1.1) počinju sa Uzmimo da
je iz (vidi primjedbu 2.1). Preslikavanja
, , i su definisana kao u (2.1) i Lemi 3.1. Stavimo
i za . Vrijednost za je određena
primjenom leme u (3.1) ispod: je broj primjena preslikavanja
na tačku tako da tačke rotiraju (suprotno od
smjera kazaljke na satu) nazad do (vidi sliku 3.1).

Ponovo, primjenom iste leme, (3.1) povlači da primjena
preslikavanja na pomjera (u smjeru kazaljke
na satu) do . Tako, niz je periodičan. Prema
definiciji, između i postoji korespodencija (simetrija
u odnosu na pravu ). Prema tome, i niz je periodičan.
Specijalno, iz sistema (3.3) slijedi ; odakle
je . U skladu sa primjedbom 2.1, sva rješenja (1.1) su
periodična.

Na slici 3.1 tačke niza

su označene crnim kružićima. Tačke niza , koje čitamo zdesna
ulijevo u (3.4) sa primijenjenim na svaki par, su označene
otvorenim kružićima na slici 3.1. Sljedeća posljedica se odnosi na
specijalan slučaj kada početni par leži na pravoj .
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Posljedica 3.3. Za i sva rješenja
(1.1) su invarijantna nad .

Dokaz. Rješenja su periodična prema teoremi 3.2.
Pretpostavimo da, za dato i , rezultujuće rješenje ima
najmanji period , tako da je . Zbog toga što leži
na pravoj , lema daje

Dalje,

Nastavljajući ovako se dobija
za .

Reindeksiranjem, jasno je da ako bilo koja iteracija padne na
pravu , preostala trajektorija postaje simetrična u odnosu na
ovu liniju. Možda ovo objašnjava zašto ima tako mnogo invarijantnih
rješenja kada je racionalan. Ugao rotacije nikad
nije racionalni multiplikator od za netrivijalne racionalne
, tj. (vidi Š3Ć), pokazujući velik broj iteracija u odnosu na
veličinu . Veća gustoća mnoštva tačaka trajektorije daje veću
vjerovatnoću da jedna od njih padne na pravu . U svakom
slučaju mali period neinvarijantnih rješenja sa racionalnim
prikazan na slici 3.1, zasnovan je na uočavanju da je
zadovoljavajuća aproksimacija za za malu početnu
tačku; odatle period 8 u rješenju (3.4). Očekivano, sa istim
i većim , dobijamo period 79, V-invarijantno rješenje
prikazanonaslici3.2.Uovomrješenjuoznačenomcrnimkvadratićima,

. Prema posljedici iznad, cijela orbita je simetrična u
odnosu na pravu . Ostavljajući početnu tačku
i mijenjajući na , vraćamo se na neinvarijantno rješenje sa
periodom 8 prikazano praznim kružićima na slici 3.2.
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Slika 3.1. Zbir indeksa od i uvijek je jednak .

Slika 3.2. (crni kvadratići);

(prazni kružići).
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Slika 4.1. .

3. Samosličnost i haos

Prisutnost simetrije u gruboj iteraciji, možda slučajna zbog
pogodnog broja, veoma je upadljiva. Što je još nevjerovatnije, kako
početne vrijednosti postaju veće tako proces može generisati sliku
sa samosličnom složenošću kao nasumično obavijanje širom ravni.
Vidjeti slike 4.1 i 4.2. Svaka od slika 4.1 - 4.4 pokazuje različit izbor
parametra i nekoliko orbita za svaki izbor. Čak je haos moguć
za specifične početne uslove kada je i racionalan
multiplikator od . Takva rješenja daju izvor za sasvim neočekivane
strukture kako početna tačka postaje veća. Naprimjer, slika 4.4
pokazuje samo četiri orbite, sa bizarnim izraslinama koje formiraju
jednu krajnju orbitu. Iako se čini neosporno da fraktalne zvijezde u
slici 4.1 nastavljaju da šire svoju ponovljenu složenost, teško je reći
što se može pojaviti iz nejasnih bio-reproduktivnih oblika u slici 4.3
kada bi ih zumirali. Evidentno, samo distanca od izvora podesno
izabranih početnih vrijednosti ograničava složenost ovih slika.
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Slika 4.2. .

Slika 4.3. .
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Slika 4.4. .
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