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PERIODICNA RJESENJA PROIZVOLJNE DUZINE
CJELOBROJNE DIFERENTNE JEDNADZBE

Sazetak

U ovom radu razmatrana je jedna cjelobrojna diferentna jednadzba oblika:
Vu+1 = [ﬂf}"n] — ¥n-1. {-ﬂ = E.l ||'-~'r| = 21 @+ {].l a ¥ ii}J}’D;}"l €L
(1)
gdje [x] oznacava najmanji cijeli broj koji nije manji od x. Za vrijednost parametra
a = 0, *1 posmatrana jednadzba je linearna, i ne razmatra se u ovom radu. Za
a = 3/2, (1) postaje oblika

3y, +1

- ¥,_1> ako je y, neparan,

Y1 = 3y

n

1 akojjey,, paran,

poznata pod nazivom ,3x + 1iteracija”. Autori su dokazali ultimativnu rekurentnu
osobinu za ¢jelobrojnu diferentnu jednadzbu (1) za sve pocetne vrijednosti v, v € Z i

sve vrijednosti parametra —2 <. a <. 2.
Posmatrana cjelobrojna diferentna jednadzba (1) se moZe transformisati u

sistem prvog reda sa dvije promjenljive transformacijom T (2, v) = (. [ay] — x)
. Jednostavnost transformacije (preslikavanja) od T ne daje nagovjestaj sloZenosti koju
pokazuje ,rasturanje” na dijagramu kod nekih rjesenja.

Kljucne rijeci: diferentna jednadzba, periodicna rjesenja, samoslicnost
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Summary

In this work we considered integer difference equation of second order of forms:

Yns1 = [ﬂ'}"n] — ¥u-1. {ﬂ' ERal <2,a=0a=% ii}J}?D’J.‘l =L (1)
where [x] denotes minimal integer which is not lower than of x. For the parameter
value @ = 0, X1 this equation is linear, and that case is not considered in this work. For

a = 3/2, equation (1) becomes

3y, +1

- ¥,-1, ifisy, odd,

Y+l = 3y

2

which is known as ,,3x + 1 iteration”. Authors have proved the recurrent characteristic

n

— Y, if1sy, even,

for the integer difference equation (1) for all starting values vg,vy € Z and all
parametar values —2 <2 @ < 2.

The given integer difference equation (1) can be transformed to the first order
system with two variables by using transformation T[x;}’:] = [}’; [a}ﬂ —2':].
Simplicity of transformation (mappings) of T do not give us signs of complexity which
shows ,, messing up “on the diagram at some solutions.

Key words: difference equation, periodic solutions, self-similarity
1. Uvod

Nelinearnediferentnejednadzbe,odnosnosistemidiferentnih
jednadzbi imaju sve Siru primjenu u mnogim podrucjima nauke, prije
svega u matematickoj biologiji, epidemiologiji i ekonomiji, gdje

(n+1)-va generacija (ili stanje) zavisi od n prethodnih generacija
ili stanja. Imajudi na umu znacaj proucavanja diferentnih jednadzbi
i sistema diferentnih jednadzbi, u ovom radu smo se odlucili da
detaljnije prouc¢imo ponasanje periodi¢nih rjeSenja proizvoljne
duzine nelinearne cjelobrojne diferentne jednadzbe drugog reda
Vnt1 = (V] —Vno1, {la€ER|al <2,a #0,a # £1}, v, EL
Naravno, sistem prvog reda koji predstavlja ovu jednadzbu
dokazano ima samosli¢na i haoticna rjeSenja u cjelobrojnoj ravni

(vidi [1]).
U radu autori dokazuju da su sva rjeSenja nelinearne
cjelobrojne diferentne jednadzbe drugog reda
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Vne1 = @Vl — V1. {2 €ERal <2, a=0,a = +1}, v, €L

periodicna.

Analizirajmo nelinearnu diferentnu jednadzbu drugog reda
Vrs1 = (@] = V-1, {ea€Rlal <2, a#0,a# +1}Lys 1 €L (1.1)
gdje [x] oznacava najmanji cijeli broj koji nije manji od x. Poznato
je da za a = 0,+1 posmatrana jednadzba je linearna, pa ne¢emo
razmatrati te vrijednosti u ovom radu. Pored prirodne generalizacije
na diskretni prostor, postoje bar tri razloga zasto je (1.1) interesantna.

Prvo, za a = 3/2, (1.1) postaje

3y, +1 )
5 Va1, ako je v, neparan
Ype1 = ¥ (1.2)
n n
35 = Yn-1. ako je v, paran,

varijjanta drugog reda poznata pod nazivom ,3x + 1iteracija“.
Trenutno, koliko znamo, ultimativha konvergencija ka 1 3x +1
iteracije ostaje nedokazana hipoteza. Nasuprot tome, mi ¢emo
dokazati ultimativhu rekurentnu osobinu (1.1) za sve pocetne
vrijednosti vy, € Zisvevrijednosti parametra—2 < a < 2.Pocetno
tvrdenje je da je rjeSenje uvijek rekurentno. Stavise, rjesenja (1.1)
mogu biti periodi¢na sa proizvoljnom duzinom (Teoreme 2.2, 3.2).

Drugo, metod koriSten za zakljucak o periodi¢nosti svih
rjeSenja (1.1) je elegantan i potencijalno Sire upotrebljiv. Bez ovog
metoda ne bismo ¢ak mogli ni dokazati da su rjeSenja specijalnog
slucaja (1.2) jednadzbe (1.1) ogranicena (vidi [2]).

Trece, posmatrana diferentna jednadzba (1.1) se moze
transformisati u sistem prvog reda sa dvije promjenljive
transformacijom T(x,y) = (v, [ay] —x). Jednostavnost
transformacije (preslikavanja) od T ne daje nagovjestaj sloZenosti
koju pokazuje ,rasturanje“ na dijagramu kod nekih rjeSenja. Vidjeti
figure 4.1- 4.4.

1.1 Samoslicnost, fraktali i haos
Teorema 1.1. Neka je (X,d) kompletan metricki prostor. Neka
su fi:X =X (i =1,2,...,N) kontrakcije metrickog prostora (X,d). Tada

postoji jedinstven neprazan kompaktan podskup K skupa X takav da je
K=fKIUFAEEIU..UfK).
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Definicija 1.1. Skup K iz prethodne teoreme nazivamo
samoslicnim s obzirom na {f;, fa, ... fir} (vidi [6]).

Neformalno receno, objekat je samoslican ako se moze
razloziti na dijelove koji su umanjena kopija cjeline. Najpoznatiji
primjer samoslicnih skupova su fraktali. Fraktale karakterise (vidi
[7)):

(i) Neki oblik samosli¢nosti (tacne, priblizne ili statisticke),

(i) Fina struktura na svakom nivou uvecanja,

(iii) Prevelika nepravilnost da bi se mogli opisati klasi¢cnim
geometrijskim jezikom,

(iv) Obicno je Hausdorff-ova dimenzija veca od topoloske',

(v) U vecini slucajeva je fraktal definisan jednostavhom
rekurentnom relacijom.

Prirodni oblici koji pokazuju fraktalne karakteristike su:
oblaci, morska obala, munje, planinski lanci, snjezne pahuljice,
neke vrste biljaka itd.

Teorija haosa se bavi pojavama specificnog tipa
nepredvidljivosti, Cije ponaSanje je deterministicko sa velikom
osjetljivos§¢u na pocetne uslove. Naime, male promjene pocetnih
uslova mogu dovesti do ogromnih promjena u ponasanju pojave.
Treba istadi da takvi procesi nisu stohasticki, iako se ponekad tako
¢ini. To su u potpunosti deterministicki procesi koji podlijezu
odredenim fizickim i matematickim zakonima i kao takvi potpuno
su predvidljivi uz savrSen uvid u pocetne uslove. Klasi¢an primjer
je vremenska prognoza koju je moguce sa zadovoljavajucom
precizno$cu dati za otprilike sedam dana unaprijed, iako bi teoretski
ona mogla da se da za bilo koji dan u buduénosti (uz ignoriranje
efekata Heisenberg-ovog principa neodredenosti).

1.2 3x+ 1iteracija
3x + 1 problem (poznat kao Collatz-ov problem, Kakutani-
jev problem) razmatra iteracije funkcije f: Z — Z, definisane sa

Jxr+1 .
5 ,akojex = 1(mod 2)
fl =4 =
7 akojex = 0 (mod2)

' Termin fraktal je uveo B. Mandelbrot $5C. On je definisao fraktal kao skup

Cija je Hausdorff-ova dimenzija strogo veca od topoloske. Ovakva definicija,
medutim, iskljucuje brojne skupove koji imaju ,,fraktalne“ karakteristike.
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Hipoteza (joS uvijek nedokazana) je da za svaki prirodan broj

d postoji k takav da je f*{d) =1, gdje koristimo oznake
FHd) = f(d), (Wk = 2) f*(d) = F(F1d)
Stavljajudi recimo d = 13, dobijamo niz iteracija
13,20,10,5,8,4,2,1,2,1,2,1,..

Vrijednosti 11 2 se dalje ciklicno ponavljaju. Mnostvo primjera (sa
razlicitim pocetnim vrijednostima d) daje opravdanje za ovu hipotezu.

Svako rjeSenje diferentne jednadzbe

Jx,+1

,akojex, = 1{mod 2)
Tn41= *,

5 akojex, = 0{(mod2)

sa pocetnim uslovom x;=d,d € N je eventualno periodicno, sa
period-2 rjeSenjem {1,2}.
Pregled vaznijih rezultata vezanih za 3x + 1 problem je dat u /§].

1. Kvalitativno ponasanje rjeSenja
Oznacimo sa (x, y) tacke u cjelobrojnoj ravni Z?, i neka realni

parametar a zadovoljava |a| < 2. Transformacijom

T(x, _T} = (}".l |-I‘1_]".I _x}_. Xn = (xn.l}?n} = Tn(xl}.l}rl}j.ln = ﬂ.l-lJz.l o (2'1}
se jednadzba (1.1) svodi na sistem diferentnih jednadzbi prvog reda.

Primjedba 2.1. Niz (y,)koji se pojavljuje kao druga
koordinata u svakom izrazu (X,) je isti niz kao i onaj generisan sa
(1.1) za xg = [ayg] — 4.

Prvi utisak o rotacionom kretanju rjeSenja je dobijen iz stepena
matrice 4 = ( ﬂi 1), Jakobijeve matrice preslikavanja T izuzimajudi
- a

uticaj funkcije [ ]. Zbog |a| = 2, A ima kompleksne sopstvene

vrijednosti. Nakon dijagonalizacije A dobijamo

a sin(nd) 2 sin(né)
cos(ng) — Iy e .
n_ Ve—as Ve—as _ =
A= 2sin(nf) a sin(nd) 0= arccos(z). (2.2)
-—— cos(nf) + —
yvid—qa- V4 —qa-

389



MATEMATIKA

Identitet x? +y? —axy =y? + (ay —x)? — ay{ay —x) predstavlja
familiju invarijantnih elipsi E(x,v) =x*+y* —axy za linearnu
jednacinu. Slika 2.1 prikazuje elipsux? + y* — (1/2) xy determinisanu

saq = %i (2¢,v5) = (0,32) kaoiprvih3estiteracijaod T primijenjenihna
(xﬁ,}rc,‘] =1(0,32):(0,32),(32,18), (16, —24),(—24, —28),(—28,10) i
{10,33). Sve ove tacke leze na elipsi x* +y* — (1/2)xy = 1024 jer
je funkcija [ 1 neaktivna. Prvi neparan ¥, na koji funkcija [ ]ima
uticaj je vz = 33, i oCekujemo da T(10,33) ne lezi na ovoj elipsi.
Zaista, 337 + 7% —(1/2) -33 -7 = 1022.5 = 1024,

Kretanje u smjeru kazaljke na satu u Z* iteracija od T jos je
jasnije pogledom na vektorsko polje na slici 2.2 za a = 1/3. Svaki
usmjereni segment u (x,¥) ima oblik T{x,v) — (x,7) i pokazuje
prema T{x,y). Ovo se jasno vidi na slici 2.2 za orbitu sa pocetnom
tackom (1,0). Vektorsko polje je podijeljeno u Cetiri kvadranta sa
granicama y = x i step-lokusom

¥ = [ay] — x. Svaki linearni segment ovog lokusa ukljucuje
gornju lijevu krajnju tacku a iskljuc¢uje donju desnu krajnju tacku.
Kvadranti su odredeni znakom komponenti vektora pravca:
Ax = 0(=0) ili Ay = 0{=0). Uopste, rotacija u smjeru kazaljke
na satu i grube elipticke orbite lako se dobijaju za sve vrijednosti
—2 < a < 2 ipocetni uslov (xq,v) # T{xg Vo).

TEOREMA 2.2. Za razli¢ite od nule racionalne a = p/q gdje su
p I q uzajamno prosti, broj razlicitih vrijednosti u rjesenju v,, moze biti
proizvoljno velik u zavisnosti od pocetnih uslova.

Dokaz. Posmatrajuci primjer sa Slike 2.1 biramo pocetne
uslove tako da funkcija [ ] bude neaktivna Zeljeni broj puta, ¢ime
nelinearna jednacina (1.1) prakticno postaje linearna. Stavimo
Yo = g™,y = pg™ tsapo Zelji velikim pozitivnim m. Kao i ranije, sa
A oznacimo matricu odgovarajuceg linearnog sistema. Indukcijom
se moZe pokazati da je

—fk—z j;—l
qn—z qn—l

At = \ 2.3
_ﬁ?ﬂ ﬁ: ( }
"t qn
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Slika 2.1. @ = 1/2, X, = (0,32).

S > S TSN UL
Ly |y
| M v
A 2|
A A A LA >y i
/ v Y
VAR VAN V4 =/'0 |
X v 3 ¢
A i R
IP
7\ ! _K « — K
L
I . .
A
Slika2.2. @ = 1/3, Xy = (1,0).
L?'!."Iz
e - n—k ko m—2k - 2k
EdJEJEf—1=ﬂqu=1jlfn(P;t?}=Z( , )(—1} p* g™ zan = 0.
=0

Posljedica uzimanja relativno prostih pi g je da g nikada nece dijeliti
f zan = 0; koeficijent uz p™ u f;, je uvijek 1. Uzastopna primjena
matrice A na pocetni vektor (0, g™) daje opstu formu prvih m + 1
iteracija: v, = f,g™ ™. One su sve razliCite jer najvedi stepen od g
koji dijeli svaku je razlicit.

Nasuprot tome, sljedeéi primjer pokazuje da, ako a nije
racionalan, ne slijedi da postoji proizvoljno mnogo razlicitih
iteracija jednostavno zbog toga S$to pocetna vrijednost mozZe biti
proizvoljno velika (vidjeti sliku 4.1).
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Primjer 2.3. Neka je a=(4/5-1)/2=06180339.. tj.
8 = 2n/5 u (2.2), ranije. Neka je v =1, =10" za n=0. Sa
ovim pocetnim uslovima sva rjeSenja imaju period 5. RjeSenja su
prikazana ispod zan = 0,1,2,3 i 6.

n Yo il ¥z Y3 Ya ¥s Yer o

o 1, 1, 0, -1, 0, 1, L.

1 1, 10, 6, -5, -9, 1, 10,..
21, 100, 61, —62, —-99, 1, 100,..
3 1, 1000, 618, —-618, —999, 1, 1004, ...
6 1, 10°% 18033, —618034 1—10, 1, 10°..

2

Treba primijetiti vezu izmedu ¥, i ¥3: ponekad je y3 = —y;
, a ponekad y; = —y, — 1. Lako je vidjeti da je y, = [10™a], gdje
|x] oznacava najveci cijeli broj koji nije ve¢i od x. Uz malo viSe
raCuna, koristedi Cinjenicu da je a® +a —1 =0, moZemo dokazati
da je ¥3 = —y; ako i samo ako je 1 — a < |10™a| — 10™a, inace je
Ya=—-yz—1

2. Periodicnost rjeSenja

Involucija je preslikavanje ¥ takvo da je kvadrat od ¥ identitet,
tj. V2 =V -V =1. Sljedeca lema obezbjeduje osnovni aparat pri
dokazivanju da su sva rjeSenja (1.1) periodicna.

LEMA 3.1. Neka je T definisano kao u (2.1) ranije, i
Six,v) =T xv) = (Jax] — v, x). Involucija Vix,v)=(v,x)
zadovoljava VT =5Vi TV =VS. To povilaci da su preslikavanja
VT, VS, TV i 5V involucije.

Dokaz. Imamo

V(T0y) =V lay] =) = (lay] - %,3) = 50,20 = S(V(x,3)) (3.1)

MnozZenjem VT = 5V sa lijeve i desne strane sa ¥V dobijamo
TV = V§, Sto koristimo za dokaz da je VTVT = VVST = I. Dakle, VT
je involucija, a sli¢no dokazujemo da su involucije i V'S, TV, i 5V.

RjeSenje jednacine (1.1) zovemo invarijantnim nad V ako
skup tacaka
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0={X eT%:X, =T"X,),n=012 ..}
zadovoljava V{0) = 0. Geometrijski, za V(x,v) = (y,x), ovo znadi
da je graf iteracija simetrican u odnosu na pravu y = x, npr. vidjeti
sliku 2.2. Za racionalno a numericki eksperimenti su pokazali
da je ova invarijantnost preovladujuca, tvrdimo da se ona javlja
sa vjerovatnocom 1. Vidjeti posljedicu teoreme 3.2. Za rjeSenja

invarijantna nad ¥ lema dokazuje periodi¢nost odmabh:

Xo =TVTV(Xy) = TVT{X, ) = TV{Xpsq) = T(Xp) = X ppeq (3.2)

Teorem 3.2. Za a € R, |a| < 2 sva rjeSenja (1.1) su periodicna.

Dokaz. Neka rjesenja (1.1) pocinju sa ¥g,%1, ... Uzmimo da
je Xy = ([ayp] — v, vo) iz Z? (vidi primjedbu 2.1). Preslikavanja T
, §, 1V su definisana kao u (2.1) i Lemi 3.1. Stavimo ¥; = V{X;)
i Yooy =V(X,) za n=1,23,.. . Vrijednost za k& je odredena
primjenom leme u (3.1) ispod: k je broj primjena preslikavanja §
na tacku V{x,) tako da tacke ¥,¥,_1,¥5_5, ... rotiraju (suprotno od
smjera kazaljke na satu) nazad do ¥; (vidi sliku 3.1).
Y1 = 5(¥) = SV(X,) = VT(X,) = V(X,s4) (3.3)

Yiesrs = T(1) = TV(X,) = VS(X,) = V(X,—y)

Ponovo, primjenom iste leme, (3.1) povla¢i da n primjena
preslikavanja T na V{X,,) pomjera ¥y, ¥y+1, Y512, ... (U smjeru kazaljke
na satu) do ¥ys, = V(Xy) = ¥;. Tako, niz (¥, je periodican. Prema
definiciji, izmedu {X,,) i (¥, postoji 1 — 1 korespodencija (simetrija
u odnosu na pravu ¥ = x). Prema tome, i niz (X,,) je periodican.
Specijalno, iz sistema (3.3) slijedi ¥y = V{(Xy) = V(X,+x); odakle
je Xy = X,+3 U skladu sa primjedbom 2.1, sva rjeSenja (1.1) su
periodicna.

Na slici 3.1 tacke niza {X,,)

(21 —3)' (—3' —6)' (—61 —5)1 (—5, —1), (—1,4), (4‘17)1 (7'6)' (6,2), (2, _3) (34‘)
su oznacene crnim kruzi¢ima. Tacke niza (¥,], koje ¢itamo zdesna
ulijevo u (3.4) sa V primijenjenim na svaki par, su oznacene
otvorenim kruzi¢ima na slici 3.1. Sljedeca posljedica se odnosi na
specijalan slucaj kada pocetni par leZi na pravoj ¥ = x.
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Posljedica 3.3. Za a € B, |a| < 2 i Xy = (vs o) sva rjeSenja
(1.1) su invarijantna nad V.

Dokaz. RjeSenja su periodicna prema teoremi 3.2.
Pretpostavimo da, za dato a i X; = (yg,¥), rezultujuce rjeenje ima
najmanji period N, tako da je X, = X,. Zbog toga sto V{X) = X lezZi
na pravoj ¥ = x, lema daje

Xy = T(Xc-} = TI"F(XD} =Vs (Xn-'} = V(X,"."—l} (3-53I
Dalje,
Xy = T":Xﬂ = TV(X,\.-'—l} =Vs ":X,\-'—ﬂ = V(X\-‘—z} (3-5}

Nastavljajuci ovako se dobija
Xk = V(}Eﬁ."—k} Zak = ﬂ.l-l.lz.l vy N.

Reindeksiranjem, jasno je da ako bilo koja iteracija padne na
pravu y = x, preostala trajektorija postaje simetricna u odnosu na
ovu liniju. Mozda ovo objasnjava zasto ima tako mnogo invarijantnih
rjeSenja kada je aracionalan. Ugao rotacije & = arccos{a,/2) nikad
nije racionalni multiplikator od w za netrivijalne racionalne a
,tj. @ = 0,+1 (vidi $3C), pokazujudi velik broj iteracija u odnosu na
velicinu X;. Veca gustoda mnoStva tacaka trajektorije daje vecu
vjerovatnocu da jedna od njih padne na pravu y = x. U svakom
slu¢aju mali period neinvarijantnih rjeSenja sa racionalnim a = 7/5
prikazan na slici 3.1, zasnovan je na uocavanju da je a = 7/5 = 1.4
zadovoljavajuca aproksimacija za 42 = 2 cos(2w/8) za malu pocetnu
tacku; odatle period 8 u rjeSenju (3.4). Ocekivano, sa istim a = 7/5
i ve¢im X, = (20,—30), dobijamo period 79, V-invarijantno rjeSenje
prikazano naslici3.2.UovomrjeSenju oznacenom crnim kvadrati¢ima,
Xz = (60,60). Prema posljedici iznad, cijela orbita je simetricna u
odnosu na pravu y = x. Ostavljajudi pocetnu tacku X, = (20,—30)
i mijenjajuci @ na @ =+/2 , vraéamo se na neinvarijantno rjesenje sa
periodom 8 prikazano praznim kruZi¢ima na slici 3.2.
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Slika 3.1. Zbir indeksa od X, i V{X,,) uvijek je jednak 8.
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- — - .
\.. n .®- 60

Slika 3.2. X5 = (20,—30),a = 7/5 = 1.4 (crni kvadratidi);
a =42 (prazni kruzidi).
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Slika 4.1.a = (v5—1) /2,8 = 2u/5.

3. Samoslicnost i haos

Prisutnost simetrije u gruboj iteraciji, mozda slucajna zbog
pogodnog broja, veoma je upadljiva. Sto je jo$ nevjerovatnije, kako
pocetne vrijednosti postaju vece tako proces moze generisati sliku
sa samoslicnom sloZeno§¢u kao nasumi¢no obavijanje Sirom ravni.
Vidjeti slike 4.1 i 4.2. Svaka od slika 4.1 - 4.4 pokazuje razlicit izbor
parametra a i nekoliko orbita za svaki izbor. Cak je haos mogu¢
za specificne pocetne uslove kada je a = 2cosf i 8 racionalan
multiplikator od 7. Takva rjeSenja daju izvor za sasvim neocekivane
strukture kako pocetna tacka postaje veca. Naprimjer, slika 4.4
pokazuje samo Cetiri orbite, sa bizarnim izraslinama koje formiraju
jednu krajnju orbitu. lako se ¢ini neosporno da fraktalne zvijezde u
slici 4.1 nastavljaju da Sire svoju ponovljenu sloZenost, tesko je reci
$to se moZe pojaviti iz nejasnih bio-reproduktivnih oblika u slici 4.3
kada bi ih zumirali. Evidentno, samo distanca od izvora podesno
izabranih pocetnih vrijednosti ogranicava sloZenost ovih slika.
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Slika4.2. @ = (1—+/5)/2,8 = 3m/5 .
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Slika 4.3. @ = 2cos(2w/7),8 = 2n/7.
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Slika 4.4. @ = 2cos(2m/9),8 = 2m/9.
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