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ORTOGONALNI POLINOMI I RAZVIJANJE
PROIZVOLJNE FUNKCIJE U RED
PREKO ORTOGONALNIH POLINOMA

SaZetak

U ovom radu pojmu ortogonalnosti pristupamo preko
definicije iz matematicke analize, i uopste ne spominjemo geometrisko
znacenje ortogonalnosti i ostavljamo ga negdje u pozadini. Znacenje
ortogonalnost prihvatamo na isti nacin kao Sto smo prihvatili
znacenje sistema linearnih jednacina, ili kvadrat broja, bez obaveze
da geometriski predstavimo te figure a time i vizuelno prikaZemo
sebi date pojmove. Glavni dio rada je rezultat da se svaka kvadratno

integrabilna funkcija f(x) na (a,b) mozZe napisati u obliku reda

icnpn (x) gdje je skup { py(x), p(x),.... p,(x),...}

n=0

proizvoljan ortonaormiran sistem polinoma u odnosu na tezinsku
Sfunkciju p(x).

Kljucne rijeci: ortogonalni polinomi, razvijanje proizvoljne funkcije u
red, tezinska funkcija, Gram-Schmidtov proces ortogonalizacije

Summary

In this work we accept the word orthogonal as a term of
mathematical analysis, on the basis of its definition, with a geometric
association only in the remote background or temporarily in abeyance.
Recall that we have already learned to speak of a linear equation or
the square of a number without feeling obliged to visualize a geometric
figure in connection with every occurrence of the words. Main part of
this work is result that every square summable (integrable) function
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f(x) defined on (a,b) we can write in the form of series ZCn p, (x)
n=0
where set { Do(x), p(X),..., p, (x),...} is arbitraty orthonormal system

of polynomials with respect to an arbitraty weight function p(x).

Keywords: orthogonal polynomials, development of an arbitrary
function in series, weight function, Gram-Schmidt process

1. TeZinska funkcija

n

Posmatrajmo polinome H,(x)=(-1)"e" o e zan= 0,1,2,...
X

1 pokazimo da je
)
Ie”‘ H (x)H,(x)dx=0 za n+m.

—00

Bez gubitka opstosti izracunat ¢emo integral za m > n. Imamo

) T o2 d" > d” 2
e H (x)H (x)dx=(=D""|¢e" e e " dx.
_jw JH, (x)dx = (-1) j e

Ako primijenimo parcijalnu integraciju sa smjenama

uze"2 d e_xz, dv= d e‘xzdx,
dx" dx"
n m—1
afu=i e d e dx, v= d 5 e
dx dx" dx"
dobi¢emo

dn 2 dmfl ) - © d 2 dn 2 dmfl 2
n € m—1 - J._ e n e Te dx.
dx dx L, odx dx dx

(1" [ H, () H,, (x)dx = ¢”
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Sad primijetimo da je

die_"2 = (—2x),
X
2
%e’fz = (“2x)(-2x)+ e (<2) = ((-2x)° -2),
X
d’ 2 2 ) 2 2
Fe_x =e " (2x)4x* =2)+e " (8x)=e " ((—2x) +12x),
X
c‘;n e = e ((<2x)" +..)
pa imamo
n m—1 @ £
e d—ne”‘2 d —e | =¢é e ((—2x)" +...)e”‘2 (=2x)""+..)] =0
dx dx ) 0

zato Sto za svaki fiksirani k€ N vrijedi

2
e 50 kad x — .

Prema tome

T 2 < d > d" 2 ) dm! 2
D" Ve ™" H (x)H (x)dx=—-| —| " e e dx.
(-1) j (OH,, (x) _jwdx( - j -

'"j “H ()H, (x)dx = (1)’ j d ( 2jx" e’“zJ LA

Sad primijetimo da je

d’l 2dl’l > dn
X —X 2 ﬂ+ 1 2’1'
dxn[e e j (20 ) = (D)2
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iz Cega slijedi

® ) 0 dm—n P dm—n—l 5
—_1)y™n [ H dx=(-1)"(-1)"2"n! e dx=2"n|——e"
O™ [ H, (H, (xds = (1) (12" ] 2o [ yRe ]

-0

Mozemo zakljuditi

Texz H (x)H, (x)dx =0,

—00

ako je m#n. Ovu relaciju mozemo opisati tako Sto ¢emo re¢i da

.. 2 .
su funkcije (¢ )" H (x), medusobno ortogonalne na intervalu
(—o0,0). Istu relaciju mozemo opisati i na drugi nacin, koji je mnogo
vazniji za tekst koji slijedi, tako §to ¢emo re¢i da su polinomi H, (x),

medusobno ortogonalni na intervalu (—oo,00) u odnosu na tezinsku

2 . . .
funkciju e . Koncept sistema ortogonalnih polinoma u odnosu na

tezinsku funkciju ¢e biti dominantan od sad pa nadalje.

Formalizujmo prethodno napisano:

(1.01) Definicija (ortogonalnost u odnosu na tezinsku funkciju)

Za dvije funkcije f(x) i f,(x) kaZzemo da su medusobno

ortogonalne na intervalu (a,b) u odnosu na teZinsku funkciju p(x)

ako i samo ako

[pfi0f,dax=0. 0
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(1.02) Problem

Pokazati da su polinomi

dn
dx"
medusobno ortogonalni na intervalu (—©,0) u odnosu na tezinsku

=X

e

H,(x)=(-1)"¢"

funkciju e_’“2 za n=0,1,2,... 0

Sljede¢e Sto zelimo pokazati je da se funkcija cosm@, za

proizvoljno me N, mozZe izraziti kao polinom C, stepena m

po promjenjivoj cosé, a poslije toga Zelimo pokazati da za takve
polinome vrijedi sljedeca jednakost:

[ (1-x)"2C,()C, (x)dx =0.

Primjenom adicionih teorema na izraze cos((n+1)0) i
cos((n—1)@) dobijamo
cos((n+1)0) = cos(nf + 0) = cosnBcosO — sinnf sind,

cos((n—1)0) = cos(nf — 0) = cosnBcosO + sinnf sinf.

Sabiranjem zadnje dvije jednakosti i premjestanjem elemenata,
imamo

cos((n+1)0) = 2cosnBcosd —cos((n—1)80).

Ova jednakost ¢e nam pomoéi, da pomocu matematicke
indukcije pokazemo sljedecu tvrdnju: Za svaki fiksirani ne-negativni

cijeli broj n, postoje cijeli ¢,., i=0,1,2,...,n, takvi da

ni’

cosnf = chi cos' (6).

i=0
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BAZA INDUKCIJE
Za n=0 imamo cos00=1=1-cos’(8). Prema tome c,, =1. Za

n=1 imamo cosl@ = cos® =1-cos'(6). Prema tome c,, =0, ¢, =1.

Jednakost je taCnaza n=0 1 n=1.
Korak indukcije

Pretpostavimo da je jednakost tacna za sve k=1,2,...,n t.
pretpostavimo da za svaki fiksiran cijeli £ (1<k <n) postoje cijeli

brojevi ¢,;, i=0,1,2,...,k, takvi da

k
cosk@ = chl. cos' (0),

i=0
1 na osnovu ove pretpostavke pokazimo da je jednakost tacna
za n+1. Imamo:

na osnovu

pretpostavke

cos((n+1)0) =2cosnBcos@ —cos((n—-1)0) =

n n—1
=2 [Zcm cos' (0)j cosO — ZCHJ cos' (0)
i=0 i=0
n n—1
=>2¢,cos™(0)-D ¢, cos'(0)
i=0 i=0
iz ¢ega mozemo vidjeti da postoje cijeli brojevi ¢
i=0,1,2,....,n+1, takvi da

n+l,i°

n+l
cos(n+1)0=">c,,, cos' ().
i=0
Mozemo zakljuciti da je jednakost tacna za svaki ne N .

Drugim rije¢ima funkcija cosnf, za proizvoljno ne N, moze

izraziti kao polinom C, stepena n po promjenjivoj cos6.

Za m # k izraCunajmo integral Ioﬁcosme coskddo :
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V4

j cosm@ cos kOdO = j G cos(m—k)0 +%cos(m + k)@jd& =
0 0

= % cos(m—k)0do +%Jcos(m +k)0dO =

0 0

sin(m—k)6); + sin(m+k)6|; =0.

T 2(m—k) 2m+k)

U relaciji

V4

jcosmecoskade =0, m#k

0

neka je x=cosf. Tada je dx=—sind@=—(1-x")"do ftj.
d0=—(1—x*)"*dx. Funkcija cosm@ se moze izraziti kao polinom
stemena m po promjenjivoj cosé:

cosm@ =C, (cosd)=C, (x),

1 sliéno imamo za cosk@. Prema tome Ioﬂcosmﬁ cosk@dO =0
postaje

1
j (1-x*)"C (x)C,(x)dx = 0.
-1
Polinomi C, (x), m=0,1,2,...,_su medusobno ortogonalni

-1/2

na intervalu [-1,1]_u odnosu na tezinsku funkciju (1—x*)"*. Time

smo dokazali Lemu 1.03 1 rijesili Problem 1.04.

(1.03) Lema
Funkcija cosm@, za proizvoljno me N, se moze

izraziti kao polinom C, stepena m po promjenjivoj cos@.
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(1.04) Problem

Pokazati da su polinomi C, iz Leme 1.03 medusobno
ortogonalni na intervalu (—1,1) u odnosu na tezinsku funkciju
(I_XZ)—I/Z' <>

Skoro na isti nacin (kao u tekstu iznad), moze se pokazati

sljedece: Funkcija sin(m+1)8 zadovoljava jednakost
sin(m+1)0 = sindS , (cos0),

gdje je S, polinom stepena m po promjenjivoj cos6.
Relacija

Va

jsm(m +1)0sin(k +1)0d60 =0, m # k,
0

je ekvivalentna sa

j (1-x*)" 8 (x)S, (x)dx = 0.

Polinomi_ S, (x)_su_medusobno ortogonalni na intervalu

[—1,1]_u odnosu na tezinsku funkciju (1-x*)"*.
Na kraju posmatrajmo polinome definisane sa

F(x)=1,

1 d"
2"n! dx"

Pokazimo da za ove polinome vrijedi

P (x)= (x*-1)", n=1,2,3,....

J:Pn (x)P,(x)dx=0, za n#m.

Zbog pogodnosti pisemo (x* —1)" = p, (x), tako da je

P dv=——[' p,(x)x"d
[P Gox"dv=— [ p, (o dx
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Ovaj integral ¢emo izraCunati za m <n pomocu rekurzije.
Prvo primijetimo da

PP (x)=0 zax=%1i k=0,1,2,..,n-1.
Potom parcijalnom integracijom, sa smjenama

u=x", dv=p" (x)dx

du=mx""dx, v=p" " (x)
dobijamo

.Elp" (X)xm dx = —mJ:llplgn—l) (x)xmfl dx.

Ponavljaju¢i jo$ parcijalnu integraciju m—1 puta, dolazimo
do

11=O(m<n).

1y mlf pe (e = (1" ml] p (0]

Prema tome,

J._Ilpn (x)x"dx=0, za m<n.

Kako je P, polinom stepena m, slijedi da
I_IIR, (X)P,(x)dx=0, za n#m.

Polinomi P (x)_su_medusobno ortogonalni na intervalu

[-1,1]_u odnosu na tezinsku funkciju 1. U tekstu iznad smo pokazali
rjeSenje Problema 1.05:

(1.05) Problem

Pokazati da su polinomi definisani sa
R(x)=1,

dﬂ

2"n! dx"
medusobno ortogonalni na intervalu (—1,1) u odnosu na

P (x)= x*-1)", n=1,2,3,....

tezinsku funkciju 1. 0
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Napomena: Polinomi H, (x) se zovu Hermitovi polinomi
reda n. Ovi polinomi se mogu dobiti kao rjeSenja Hermit-ove
diferencijalne jednacine reda n

V' =2xy"+2ny = 0.

Prvih Sest Hermitovih polinoma su

HO(x)zla
H (x)=2x,
H,(x)=4x" -2,

H,(x)=8x"-12x,
H,(x)=16x"—48x* +12,

H,(x)=32x"-160x +120x .

Polinomi C, (x) 1 S, (x) zovu se trigonometrijski polinomi
ili Chebichef-ovi polinomi prve i druge vrste reda n. Ovi polinomi
se mogu dobiti kao rjesSenja Chebichef-ove diferencijalne jednacine
reda n

(1-x*)y"—xy'+n°y=0.

Chebichef-ovi polinomi se takoder, mnogo opstije, primjenjuje
u sistemima ortogonalnih polinoma u odnosu na proizvoljnu tezinsku
funkciju. Prvih Sest Chebichef-ovi polinomi prve vrste izrazenih
preko stepena promjenjive x su:

CO(x) =19
Cl(x) :xo
C,(x)=2x"—1,

Cy(x)=4x> -3x,
C,(x)=8x"—8x" +1,

Cs(x)=16x" —20x" +5x.
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Polinomi P (x) se zovu Legendre-ovi polinomi reda n.
Ovi polinomi se dobiju kao rjeSenja Legendre-ove diferencijalne
jednacine reda n

(l—xz)y”—2xy'+n(n+l)y=O.

Prvih Sest Legendre-ovih polinoma su
R(x)=1,
A(x)=x,

B(x)=2(Gx-1),

2

s
Rx) =5 (5 =30,
P4(x)=é(35x4—30x2+3),

P.(x)= é(63x5 —70x° +15x).

2. Gram-Schmidt-ov proces ortonormalizacije

Neka je ¢,(x), ¢ (x), @,(x),... proizvoljan niz funkcija na
intervalu (a,b), takav da su sve funkcije u nizu integrabilne i linearno
nezavisne. U tekstu koji slijedi, interval (a,b) se moze zamjeniti

beskona¢nim intervalom (a,%) ili sa intervalom (—o,), ali pod
uslovom da svi integrali koji se posmatraju postoje. Pretpostavi¢emo

da je svaka linearna kombinacija y =@, +...+a,9,, konacnog

broja ¢-jeva sa konstantnim koeficijentima «,...,c, ne svi nula,
razli¢ita od nule na skupu tacki koje su dovoljne da naprave odreden

integral od w?, nad posmatranim intervalom, razli¢it od nule.
U tekstu koji slijedi simboli Pg, B PGP .. PG P

predstavljaju realne brojeve, kao i simboli {¢,,g ), za i,j=1,2,..n.
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Neka je
dy Pg, P= [ 1g,(x) .
¢ (x) _ ¢ (x)

x = b
gO( ) dé/z P¢0 P
tako da je Jb[go (x)’dx =1. Neka je

to = {#-20) = | #(0)g, ().
G (x)=¢(x)— 1080 (X) = 3 (x)—(4 9go>go (x),

d, =PG,P= [ '[G,(x) dx,

[[G()go()dx = [ ()~ (h. 2020 (1) (x)dx = O,

G o (x)dx = =[G, (g, (x)dlx = 0.

[g (g (0dx =’ pG P s pl

[lgoPax=1.

U opstem slucaju neka su funkcije g,(x), g;(x), ... definisane
uzastopno sa relacijama

e = (2,0 = [ 4,002, (V)dx,
G,(0)=¢,(0)= D g () =4,(0) =X (.88 (x),

d =PG P= j:’[Gn (x)Pdx,
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Matematickom indukcijom nije teSko pokazati da je svaka od

funkcija g, (x) ortogonalna na g,(x), ..., g, ,(x)

G o (ydx = [(G, (g, (x)dx =

[g,(0g, (ax= [ 202 oG P =l

pG Pl (‘é( )= Z<¢n’gk>gk(x)jgm('x)dx_

0,00, (s~ (.80 2. (g, (e =

e Pj

—mm,g >—mz<¢,,,gk> [ g, (g, (),

i da je svaka od funkcija g,(x), ..., g,(x) normalizovana,
tj. imaju vrjednost 1 kao integral njihovih kvadrata nad intervalom
(a,b). Kako je relacija ortogonalnosti simetri¢na, isto tako mozemo

reci da su proizvoljne dvije funkcije g;, g; medusobno ortogonalne,

za i # j. Cinjenica da su g-ovi oboje, i medusobno ortogonalne i
normalizovane, se sumira u jednu rije¢, koju zovemo _ortonormirane
funkcije.

3

Ako kao ¢-ove uzmemo konkretno funkcije 1, x, x* i x°,

na intervalu (—1,1) tada kao odgovarajuée g -ove ¢emo dobiti %,

\/7 \/7(3 ‘-1 i \/7(5x —3x) Pokazimo ovo.

d, =Pg, P=P1P= J_llzdx =2,

¢ (x) _ L
&

tako da je [ [g,(x)]'dx=1. Dalje

g(x)=

o1
C o =(x,8,) = J-_lxﬁdx =0,
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G (x)= ¢ (x)— ¢,y g (x) =x—0-g,(x) =,

d, =PxP= J:llxz dx = %,

g(x)= \/gxa

tako da je [ g,(x)g,(x)dx =0, [ [g(x)Fdx=1. Dalje

NG

<x 9g0> .[ _d __,

¢, ={x*,g)= I \/:xdx 0,

1
G,(x)= x* =&y (X) =y g (x) = x* _5,

45°

(e 0 e
gz(x)_\/;(x —g)—z\/;(fix

1 1
tako  da  jo | &(0gMdx=0, [ g (g x)dx=0,

d =F’x2—l|j‘=jl xz—l 2d —i
? 3 3

[ [g2(x)P dx=1. Na kraju

<‘x ’g0> J. _dx:(),
1 3 \/g
e, =(xX’,g)= .[lx3\/;xdx=?,
15315
e, =(x’,g,) = Lx3 E\/;(?:xz -1)dx =0,
G (%) = x" = €308y (%) = €318, (¥) = €8, (%) = x* =~ —X X’ ——x
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755 3 Y 1 [T,
g, (x)= ?(x —ng—g\/;(Sx —3x),

. 1 1
tako da je J._1g3 (x)g,(x)dx =0, j_]g3(x)g1(x)dx =0,

[ g,()g,()dx =0, [ [g,(x)Fdx=1. Primijetimo da su dobijeni

polinomi L, \/Ex, l\/g(i%x2 -1 i l\/z(Sx3 —3x) u stvari prva
20 N2 2N 2 2\2

Cetiri normirana Lagendre-ova polinoma.

Opisana procedura za konstrukciju ortogonalnog sistema iz
proizvoljnog datog skupa funkcija je poznata pod imenom _Gram-
Schmidt-ov__proces _ortogonalizacije. Formalizujmo prethodno
napisani tekst:

(2.01) Teorema (Gram-Schmidt-ova postupak ortogonalizacije)

Neka je ¢,(x), ¢,(x), ¢,(x), ... §,(x) proizvoljan niz funkcija
na intervalu (a,b), takav da su sve funkcije iz niza integrabilne na

(a,b) 1 linearno nezavisne. Tada je Gram-Schmidt-ov niz definisan
sa

#(x)

&(¥) = ——,
[ T80T dx

¢k(x)—z[ M(x)g(x)dx]gi(x)

i=0

&(=7 . — zak=1,23,..n
J.|:¢k (x) - Z [Iqﬁk (x)g, (x)dxj g, (x)} dx
ortonormiran niz. 0
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(2.02) Vjezba
Primjenom Gram-Schmidtovog postupka ortogonalizacije
konstruisati ortonormiran sistem polazeéi od skupa funkcija

{1,x,x°,x°}, koristeci interval (—1,1). 0

Funkcija g, je u stvari linearna kombinacija od ¢, ..., @,
(pod frazom [linearna kombinacija ¢e se uvijek podrazumjevati
linearna kombinacija sa konstantnim koeficijentima)

g,(x) = ﬁmnx

1 1o
\/‘71 ¢1(x)_ \/‘71 go(x)a
1

= (1) e g (¥) - g, (),
Jd J_ I_

—G,(x)=

1

g (x)= \/671
1

g (x)= \/Z

G, (x) =

g,(x)= \/—G (x)= \/—¢( x)— \/—go( x)— \/—g]( x)— \/—g,,](X)
1 obrnuto, s obzirom da su koeficijenti uz ¢, uizrazuza g,,

u svim slucajima razli¢iti od nule, relaciska veza ¢-eva sa g-ovima
se moze uspjesno rijesiti, svaki ¢, je linearna kombinacija od g, ...,
g, Pokazimo ovo zadnje.
Ve¢ smo primjetili da je svaki g, (x) linearna kombinacija
od ¢,(x), ¢(x), ..., ¢ (x). Drugim rijeCima za svaki g, (x) postoje
koeficijenti a,, € R, (i=0,1,...,n) takvi da
2,() = @,y (X) + @,y () + ..+ a, 6, (x).

tj. ako posmatramo funkcije g,(x), g,(x), ..., g,(x) imamo
20(3) = digghy ().
£.(x) = a4, () + ay y (x),
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8,(%) = a5 By (x) + a4 (x) + ayd, (X)

g,(x)=a, ¢ (x)+a,4(x)+..+a,d,(x)

Jednakosti iznad mozemo napisati u matricnom obliku

_go(x)_ ay 0 0 .. 0] _¢0(x)_
g (%) a, a; 0 .. 0 |g(x)

g x)|(=lay a, a, .. 0| &(x)|
| &, (x)_ 190 An Gy - a4, | _¢n (x)_

Ako napisanu gornje-trougaonu matricu ozna¢imo sa A4,
kako je a, razlicit od nule za svaki i=0,1,2,..,n, matrica 4 je
nesingularna, pa dati sistem ima jedinstveno rjeSenje. Matrica koja je
inverzna gornje-trougaonoj matrici mora biti gornje-trougona. Prema
tome svaki ¢, se moZe napisati kao linearna kombinacijaod g,, g,
... g,. 1z ovoga slijedi da je _g, _ortogonalan na svaku linearnu
kombinaciju od @,, ... ¢, ,. Time smo dokazali sljedee dvije leme:

(2.03) Lema

Neka su @,, ..., ¢, &> - &,, funkcije iz Teoreme 2.01.
Tada svaka funkcija g,, k=0,1,...,n, se moZe napisati kao linearna
kombinacijaod @,, ..., §,, i obrnuto, svaka funkcija ¢,, k=0,1,...,n,

se moze napisati kao linearna kombinacija od g, ..., g,. 0

(2.04) Lema
Neka su @,, ..., ¢, &> - &,, funkcije iz Teoreme 2.01.
Tada je funkcija g,, k=0,1,...,n, ortogonalna na svaku linearnu

kombinaciju od @,, ..., @, ,. 0
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Ako je y(x) neka linearna kombinacija od ¢,, ..., ¢, koja
je ortogonalna na svaku od funkcija ¢, ..., @,_,, ona mora biti
konstanta pomnozena sa g, (x). Ovo mozemo vidjeti iz procesa
konstrukcije g,(x)=G,(x)/d)*, gdje su ¢, i ostali koeficijenti

niza c¢,, u funkcijama G, (x) jedinstveno odredeni zbog zahtjeva
ortogonalnosti u svakom koraku, a koeficijenti uz ¢, (x) su jedinice

0=l
(G,(1)=9, _kz(:)cnkgk ). Tako osobina ortogonalnosti sama po
sebi dozvoljavia mnozenje Citavog izraza G, (x) sa proizvoljnim
konstantnim faktorom, da je y(x) konstanta pomnozena sa g, (x)
mozZemo pokazati i na sljedeci na¢in. Ako su a, >0 i a, koeficijenti
uz ¢, u g, 1 y-iredom

2,(x) = a,,(x) + ..+ a,dh (%),

y(x)=a,'d,(x)+...+ ayh, (x),

'
n

izraz y ——-g, ne sadrZi ¢, ;1on je linearna kombinacija od
@ys --r @, koji je ortogonalan na svaku od ovih funkcija (kako je
y ortogonalna na svaku od ¢, ..., ¢, , 1kako je g, ortogonalna na

svakuod ¢, ..., 4, , slijedidajei y -2
a

g, ortogonalna na svaku od

n

@, ---» @, ), paje ortogonalna ina sebe, tj. integral njezinog kvadrata

n

nad posmatranim intervalom je nula. Ovo znac¢idaje y——*-g =0,

n
pa kako su ¢ -jevi linearno nezavisni svi koeficienti po kojima je ova
funkcija izrazena, preko ¢lanova od ¢,, ..., ¢,_,, moraju biti nula.

Dalje, ako je posmatrana  normalizovana i vrijedi da je a'y, <0,

y mora biti identicki jednaka sa g,. Time smo dokazali Lemu 2.05:
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(2.05) Lema

Ako je y(x) linearna kombinacija od ¢,, ..., @, koja je
ortogonalna na svaku od funkcija @,, ..., ¢, ,, tada postoji konstanta
a € R takva da y(x)=ag, (x), za svako x. 0

3. Ortogonalni polinomi koji odgovaraju proizvoljnoj
tezinskoj funkciji

Neka je p(x) ne-negativna funkcija koja je integrabilna
nad (a,b), 1 koja ima osobinu da je vrijednost odredenog integrala

p(x) nad (a,b) u stvari pozitivan. U ve€ini vaznih primjena p(x)
¢e biti neprekidan i pozitivan kroz Citav interval, osim mozda u
krajnjim tackama, gdje moZze nestati ili postati beskonacan. U slucaju

beskonacnog intervala obicno se pretpostavi da je proizvod p(x) sa
proizvoljnim polinomom, integrabilan, nad posmatranim intervalom.
Neka je proizvod [po(x)]*x*, k=0,1,2,... uzeta kao funkcija iz
Teoreme 2.01. Odgovarajuce funkcije g, (x), koje su u stvari linearne
kombinacije ovih (Lema 2.03), ¢e biti oblika [ p(x)]"* p, (x), gdje su

P, (x) polinomi stepena n. IzraCunajmo prvih nekoliko polinoma.

d, =P, P=PLp(x)] *x P= [ p(x)d,

(v =2 (’;)]x - ﬁo[p(x)]” ()] py (),

. 1 :
gdje je p,(x) ZT. Izracunajmo g, (x)
d

0

¢ = (g0 = [ [p(x)]"¥ ﬁ[p(x)]” dv,= ﬁjﬁp(x)xdx,
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G(x) = 4 ()~ 08, (1) =[p(0)] *4' ¢, ﬁ[ P =[p (x)]”z[ _ﬁ ]

0

d, =PG,P = ['[G,(x)F dx,

d1/2 _[ ()] (\/7 \/ﬁ] [p(x)] pl(x):
gdje je p, (X):ﬁx_—'dllo_do . Izratunajmo g, (x)

e = (. 80) = [ [P X [p ()] py(x)dx = [ P py (x)d,

ey = (28 = [ [P 21 p(0]" py (x)dx = [ p(o)w py (x)ek,

G, (x) = ¢, (%) — €38, (¥) = ¢,,8,(x) = [p(x)]m X’ _Czo[p(x)]l/2 Po(x)— C21[p(x)]1/2 pi(x)=

:[IO()C)]I/2 xz_czopo(x)_cﬂpl(x) :[p(x)]l/z [xz_ i J
( ) g i

d, PG, P~ ['[G, (0] dx.

Gz (x) 12 2 G 1% Cy _ 12

gZ('x): 12 _[p( )] - - _[p(x)] pz(x)’
d) (\/_2 4 d Jd.dd, |d,d, ]
. 1 c C, C c
ngeJe pz(x) — x 21 21710 _ 20 .
Ja 4, d - Jddd, \Jdd,

Ako  pretpostavimo da su g, (x)=[p(x)]"” p, (%),

k=0,1,.,n-1, funkcije dobijene Gram-Schmidtovim

postupkom ortogonalizacije pomoc¢u funkcija ¢, (x)=[p(x)]"*x",

k=0,1,2,..,n-1, gdje je svaki p,(x) polinomi stepena k, tada za
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g,(x) imamo
e = 8) = [ [P X [P0 py(x)dx = [ p()x" p, (x)ex,

G,(9)= 4,00~ X ieug (0 =[P x" = T[] 5, (1) =[G (" = 31y ()

d, PG, P=[ G, () d,

G,(x)

— 12 L n_L n-1
i =[p(x)] N @Zkopk(x)].

Prema tome matematickom indukcijom sad nije tesko pokazati
teoremu 3.01.

g,(x)=

(3.01) Teorem

Neka je dat skup funkcija

Lo, 2, [P 2 [ p(0)] 2 5, .
1 neka je p(x) ne-negativna funkcija takva da integral

proizvoda proizvoljnog polinoma sa p(x) nad intervalom (a,b)
uvijek postoji. Tada Gram-Schmidtovim postupkom iz datog
skupa funkcija mozemo konstruisati ortonormiran sistem

{[P(0]" py(2),[P()] p, (), [ (] Py (x),. [ (0] p, (X),...
gdje su p,(x), £k=0,1,2,...,n,..., polinomi stepena k. ¢

Polinomi p, (x) su normirani ortogonalni ili ortonormirani

polinomi sa p(x) kao teZinskom funkcijom. Oni zadovoljavaju
uslove

ij(x)Pm (xX)p,(x)dx=0, m#n,

[ P, (Pax=1.

Svaki od polinoma je stepena prikazan kao njegov subskript,
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1 koeficijent uz ¢lan x" je pozitivan. Ove osobine potpuno odreduju

sistem polinoma p, (x).

Pokazimo da je proizvoljan ortogonalan sistem funkcija

{f,(x), f5(x),..., £, (x)} linearno nezavisan. Pretpostavimo da je suma

zzzlakf}c(x) =0 zaneke a,,...,a,. Tada

0= ijo.akf}c (x)dx = ij[ialf;(x)j o fi(x)dx = i e [ I[fk (X)) dx.

k=1 k=17 \_i=1

Ovo povlaci da je a, =0 za svaki k=1,2,...,n. prema tome

{/1(x), £5(%),.... £,(%)} je linearno nezavisan skup. Time je dokazana
Teroema 3.02.

(3.02) Teorem

Ortogonalni sistemi su linearno nezavisni. 0

Prema tome mozemo zakljuciti da je sistem

{1 P (0. p(O]” P, (), [P Py (), [ P(0)] p, ()]
linearno nezavisan, pa je i skup polinoma

{1Po(x), P, (%), P, (X),..., p, (%)}
linearno nezavisan. Ili drugim rijeima, svaki polinom n

-tog stepena se moze izraziti kao linearna kombinacija od p,(x), ...,

p,(x). Svaki p (x) je ortogonalan na svaki polinom niZeg stepena

u odnosu na tezinsku funkciju p(x), tj. ako je g(x) bilo koji takav
polinom,

[P, (gx)dx =0.

346



MATEMATIKA

Ove Cinjenice su direktne posljedice opstih rezultata dobijenih
u Lemama 2.03 i1 2.04. U tekstu iznad smo pokazali sljedec¢e dvije
tvrdnje:

(3.03) Propozicija

Nekasu p,(x), k=0,1,...,n, polinomiiz Teoreme 3.01. Tada se
svaki polinom n -tog stepena moze napisati kao linearna kombinacija

od py(x), ..., p,(x). ¢

(3.04) Posljedica
Neka su p,(x), k=0,1,...,n, polinomi iz Teoreme 3.01. Tada

je svaki p,(x) ortogonalan na proizvoljan polinom nizeg stepena, u

odnosu na tezinsku funkciju p(x). 0

4. Razvijanje proizvoljne funkcije u red

Polinomi p, (x) iz Teoreme 3.01 se mogu koristiti za formalno
razlaganje proizvoljne funkcije u red. Formule su komplikovanije
zbog prisustva tezinske funkcije, ali su u drugu ruku, jednostavnije
zbog ¢injenice da su p -ovi normalizovani. Zelimo znati kada se

proizvoljna funkcija f(x) moze napisati u obliku reda

J(xX)=cypy(x)+c,p(x)+...= chpn (x)
n=0
tj. kada se funkcija f(x) moze razviti u red po ortogonalnim
polinomima p (x). Pretpostavimo da se f(x) moze razviti u ovakav

red 1 da su sljedece operacije opravdane. Mnozenjem sa p(x)p, (x) 1
integriranjem u granicama od a do b dobijemo

b = b
| P f@)p (de =Y e, | p()p, (x)p, (x)dx.
n=0
Zbog ortonormiranth osobina polinoma p,(x), svi integrali

na desnoj strani jednaki su nuli, osim kada je k¥ =n, 1 u tom slucaju

[ pp, ()p, ()de =1,
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Prema tome

¢, = [ P f () p, (X)d.

Koeficijenti ¢, (x) se mnazivaju _ Furijerovi koeficijeni

koeficijenti funkcije f(x) u odnosu na ortonorirane polinome
p, (x) satezinskom funkcijom p(x). Red ijocn p,(x), gdjesu ¢,
Furijeovi koeficijenti funkcije f(x) naziva se Furijeov red funkcije
f(x). Furijeovi koeficijenti postoje za svaku funkciju f(x) koja je
kvadratno sumabilna na (a,b) sa tezinskom funkcijom p(x). Na

osnovu nejednakosi Cauchy-Bunjakovskog

12

Ubﬁ (x).f5(x)dx| < ( jb[ f (x)]zdx)l/z ( jb[ fz(x)]zdx)

integral jbp(x) f(x)p,(x)dx konvergira za ovakve funkcije.

Dalke, za svaku ovakvu funkciju f(x) moZemo napisati njen
Fourierov red, ali bez daljeg ispitivanja ne znamo da li je red

konvergira i ako konvergira da li mu je suma f(x).

Ako je ch p,(x) Furierov red funkcije f(x) (f. ako su

n=0

b ™ =
¢, = [ p(x)f(x)p,(x)dx) onda pisemo f(x): De,p,(x).
n=0
Prethodni tekst moZemo sumirati sljede¢om teoremom:

(4.01) Teorema
(Furierovo razlaganje u odnosu na ortogonalne polinome)

Neka je

{[P(1” Py (0[] (), [P Py (), [ P(O] P, ().}

ortonormirani sistem iz Teoreme 3.01. Tada se svaka kvadratno

sumabilna funkcija f(x) na (a,b) moze napisati u obliku
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icn P, ().

Ovo zovemo Furijerovo razlaganje funkcije f(x) naintervalu

(a,b) u odnosu na ortogonalne polinome i1 piSemo

F@: Y,
Skalare

¢, = [ px)f(x)p, ()dx,

zovemo Furierovi koeficijenti funkcije f(x) u odnosu na
ortogonalne polinome p, (x) sa teZzinskom funkcijom p(x). 0
Neka s, (x) oznacavaju parcijalnu sumureda ZCk p,(x) svedo

k=0
¢lana n-tog stepena: s, (X) = ¢, py(x)+ ¢, p(X) +...4+¢,p,(x).

Ako umjesto x uzmemo varijablu ¢ u formuli za Furijerove
b
koeficijenet ¢, = J pO)f()p,(t)dx, 1 dobijeni izraz zamjenimo
umjesto ¢ -ova u prethodnu jednakost, dobi¢emo

$,00= P PO SO O+ [ p (RO SO O+ .+ p, ([ p(0) (1), (D,
b
5,0 = [ PO SO P(¥)py () + p(X) Py (O) + .4 p, () p, ()],

5,00 = [ PO S (OK, (x.0)dt,
gdje je

K, (60 =K, (60 = Y p, (00, ()

U stvari, ako je f(x) polinom n-tog ili nizeg stepena,
f(x)=r (x), izprethodnogdijelaje poznato da postojireprezentacija
oblika f(x)= ch p,(x) gdje je desna strana kona¢na suma umjesto

n=0
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beskonacnog reda. Procedura za odredivanje koeficijenata tada

se primjenjuje ez pitanja konvergencije, i koeficijenti su dati sa

c, = ij(x) f(x)p,(x)dx. U ovom slucaju s, (x) je isti kao =, (x),

1 7, (x) je identicki proizveden pomocu formule

b
7,0 = pO)7,(OK, (x,0)dt.
Na primjer, posmatrajmo ortonormirane Lagendreove
polinome koje smo dobili u vjezbi 2.02

P(x) = 1

B(x)= \/7

@(x)f\g(axz—
1|7 /23

P3(x)=5\/;(5x —3x)_

Ako razvijamo polinom p(x)=x’—1 preko B, B, P, i B
imamo

¢ = [ (@ ~DR @)y =2
J6

¢ =] (0 =DR()dr ==,
&= [ (@ ~DRx)dx =0

¢, =] (¥ DR (x)dx = J_
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Prema tome

Vo 214

X —1==\2P(x)+ - B +0R () + —P( ).

Time smo rijesili zadatak 4.02.

(4.02) Zadatak
Polinom p(x)=x’—1 napisati kao linearnu kombinacju

Lagendreoveovih ortonormiranih  polinoma P(x)=

ﬁa

<I>’1(x)= %x, Pz(x)Z% %(3x2—1)il%(x)Z%\/g(Sf—&c).
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