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Saet Penjić
Nedžad Cikotić

ORTOGONALNI POLINOMI I RAZVIJANJE
PROIZVOLJNE FUNKCIJE U RED

PREKO ORTOGONALNIH POLINOMA

Sažetak

U ovom radu pojmu ortogonalnosti pristupamo preko 
denicije iz matematičke analize, i uopšte ne spominjemo geometrisko
značenje ortogonalnosti i ostavljamo ga negdje u pozadini. Značenje
ortogonalnost prihvatamo na isti način kao što smo prihvatili
značenje sistema linearnih jednačina, ili kvadrat broja, bez obaveze
da geometriski predstavimo te gure a time i vizuelno prikažemo
sebi date pojmove. Glavni dio rada je rezultat da se svaka kvadratno 

integrabilna funkcija (x)  na (a,b) može napisati u obliku reda

=0

( )n n
n

c p x
∞

∑  gdje je skup { }0 1( ), ( ),..., ( ),...np x p x p x

proizvoljan ortonaormiran sistem polinoma u odnosu na težinsku

funkciju ( )xρ .

Ključne riječi: ortogonalni polinomi, razvijanje proizvoljne funkcije u 
red, težinska unkcija, Gram-Schmidtov proces ortogonalizacije

Summary

In this work we accept the word orthogonal as a term o
mathematical analysis, on the basis o its denition, with a geometric
association only in the remote background or temporarily in abeyance. 
Recall that we have already learned to speak o a linear equation or
the square o a numberwithout eeling obliged to visualize a geometric
gure in connection with every occurrence o the words. Main part o
this work is result that every square summable (integrable) unction
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(x) dened on (a,b) we can write in the orm o series
=0

( )n n
n

c p x
∞

∑  

where set { }0 1( ), ( ),..., ( ),...np x p x p x  is arbitraty orthonormal system 

o polynomials with respect to an arbitraty weight unction ( )xρ .

Keywords: orthogonal polynomials, development of an arbitrary 
unction in series, weight unction, Gram-Schmidt process

1. Težinska unkcija

Posmatrajmo polinome 
2 2

( ) = ( 1)
n

n x x
n n

d
H x e e

dx
−−  za = 0,1,2,...n  

i pokažimo da je

2
( ) ( ) = 0 .x

n me H x H x dx za n m
∞

−

−∞

≠∫

Bez gubitka opštosti izračunat ćemo integral za > .m n  Imamo 

2 2 2 2
( ) ( ) = ( 1) .

n m
x m n x x x

n m n m

d d
e H x H x dx e e e dx

dx dx

∞ ∞
− + − −

−∞ −∞

−∫ ∫

Ako primijenimo parcijalnu integraciju sa smjenama 

2 2 2
= , = ,

n m
x x x

n m

d d
u e e dv e dx

dx dx
− −

1
2 2 2

1
= , =

n m
x x x

n m

d d d
du e e dx v e

dx dx dx

−
− −

−

 
 
 

dobićemo

1 1
2 2 2 2 2 2 2

1 1
( 1) ( ) ( ) = .

n m n m
m n x x x x x x x

n m n m n m

d d d d d
e H x H x dx e e e e e e dx

dx dx dx dx dx

∞∞ ∞− −
+ − − − − −

− −
−∞ −∞−∞

 
− −  

 
∫ ∫
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Sad primijetimo da je

2 2
= ( 2 ),x xd

e e x
dx

− − −

2
2 2 2 2 2

2
= ( 2 )( 2 ) ( 2) = (( 2 ) 2),x x x xd

e e x x e e x
dx

− − − −− − + − − −

3
2 2 2 22 3

3
= ( 2 )(4 2) (8 ) = (( 2 ) 12 ),x x x xd

e e x x e x e x x
dx

− − − −− − + − +
...

2 2
= (( 2 ) ...)

n
x x n

n

d
e e x

dx
− − − +

pa imamo 

1
2 2 2 2 2 2 1

1
= (( 2 ) ...) (( 2 ) ...) = 0

n m
x x x x x n x m

n m

d d
e e e e e x e x

dx dx

∞− ∞
− − − − −

−
−∞

−∞

− + − +

zato što za svaki ksirani k N∈  vrijedi 

2
0 .k xx e kad x− → →∞

Prema tome 

1
2 2 2 2

1
( 1) ( ) ( ) = .

n m
m n x x x x

n m n m

d d d
e H x H x dx e e e dx

dx dx dx

∞ ∞ −
+ − − −

−
−∞ −∞

 
− −  

 
∫ ∫

Ako parcijalnu integraciju ponovimo još 1n − puta dobit ćemo

2 2 2 2
( 1) ( ) ( ) = ( 1) .

n n m n
m n x n x x x

n m n n m n

d d d
e H x H x dx e e e dx

dx dx dx

∞ ∞ −
+ − − −

−
−∞ −∞

 
− −  

 
∫ ∫

Sad primijetimo da je 

2 2
= (( 2 ) ...) = ( 1) 2 !,

n n n
x x n n n

n n n

d d d
e e x n

dx dx dx
− 

− + − 
 
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iz čega slijedi

1
2 2 2

1
( 1) ( ) ( ) = ( 1) ( 1) 2 ! = 2 ! = 0.

m n m n
m n x n n n x n x

n m m n m n

d d
e H x H x dx n e dx n e

dx dx

∞∞ ∞ − − −
+ − − −

− − −
−∞ −∞ −∞

 
− − −  

 
∫ ∫

Možemo zaključiti

2
( ) ( ) = 0,x

n me H x H x dx
∞

−

−∞
∫

ako je .m n≠ Ovu relaciju možemo opisati tako što ćemo reći da

su funkcije 
2 1/2( ) ( ),x

ne H x− međusobno ortogonalne na intervalu

( , ).−∞ ∞ Istu relaciju možemo opisati i na drugi način, koji je mnogo

važniji za tekst koji slijedi, tako što ćemo reći da su polinomi ( ),nH x   

međusobno ortogonalni na intervalu ( , )−∞ ∞  u odnosu na težinsku

funkciju 
2xe− . Koncept sistema ortogonalnih polinoma u odnosu na 

težinsku unkciju će biti dominantan od sad pa nadalje.

Formalizujmo prethodno napisano:

(1.01) Denicija (ortogonalnost u odnosu na težinsku unkciju)

Za dvije funkcije 1( )f x  i 2 ( )f x kažemo da su međusobno

ortogonalne na intervalu ( , )a b u odnosu na težinsku unkciju ( )xρ  

ako i samo ako 

 1 2( ) ( ) ( ) = 0.
b

a

x f x f x dxρ∫  ◊
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(1.02) Problem

Pokazati da su polinomi 

2 2
( ) = ( 1)

n
n x x

n n

d
H x e e

dx
−−

međusobno ortogonalni na intervalu ( , )−∞ ∞ u odnosu na težinsku

funkciju 
2xe−  za = 0,1,2,...n  ◊

Sljedeće što želimo pokazati je da se unkcija ,cosmθ  za 

proizvoljno 0,m N∈ može izraziti kao polinom mC  stepena m  

po promjenjivoj ,cosθ a poslije toga želimo pokazati da za takve

polinome vrijedi sljedeća jednakost:

1 2 1/2

1
(1 ) ( ) ( ) = 0.m kx C x C x dx−

−
−∫

Primjenom adicionih teorema na izraze (( 1) )cos n θ+  i 

(( 1) )cos n θ−  dobijamo

(( 1) ) = ( ) = sin ,cos n cos n cosn cos sinnθ θ θ θ θ θ θ+ + −

(( 1) ) = ( ) = sin .cos n cos n cosn cos sinnθ θ θ θ θ θ θ− − +

Sabiranjemzadnjedvije jednakosti i premještanjemelemenata,
imamo 

(( 1) ) = 2 (( 1) ).cos n cosn cos cos nθ θ θ θ+ − −

Ova jednakost će nam pomoći, da pomoću matematičke
indukcije pokažemo sljedeću tvrdnju: Za svaki ksirani ne-negativni

cijeli broj ,n  postoje cijeli ,nic  = 0,1,2,..., ,i n  takvi da 

=0

= ( ).
n

i
ni

i

cosn c cosθ θ∑

M A T E M A T I K A



330

BAZA INDUKCIJE

Za = 0n  imamo 00 =1=1 ( ).cos cosθ θ⋅  Prema tome 00 =1.c  Za 

=1n  imamo 11 = =1 ( ).cos cos cosθ θ θ⋅  Prema tome 10 = 0,c  11 =1.c  

Jednakost je tačna za = 0n  i =1.n

Korak indukcije

Pretpostavimo da je jednakost tačna za sve =1,2,...,k n  tj. 
pretpostavimo da za svaki ksiran cijeli k  (1 k n≤ ≤ ) postoje cijeli 

brojevi ,kic  = 0,1,2,..., ,i k  takvi da 

=0

= ( ),
k

i
ki

i

cosk c cosθ θ∑
i na osnovu ove pretpostavke pokažimo da je jednakost tačna

za 1.n + Imamo:

(( 1) ) = 2 (( 1) )

na osnovu

pretpostavke

cos n cosn cos cos nθ θ θ θ+ − − =

1

1,
=0 =0

= 2 ( ) ( )
n n

i i
ni n i

i i

c cos cos c cosθ θ θ
−

−
 

− 
 
∑ ∑

1
1

1,
=0 =0

= 2 ( ) ( )
n n

i i
ni n i

i i

c cos c cosθ θ
−

+
−−∑ ∑

iz čega možemo vidjeti da postoje cijeli brojevi 1, ,n ic +  

= 0,1,2,..., 1,i n +  takvi da 

1

1,
=0

( 1) = ( ).
n

i
n i

i

cos n c cosθ θ
+

++ ∑
Možemo zaključiti da je jednakost tačna za svaki 0.n N∈  

Drugim riječima unkcija ,cosnθ  za proizvoljno 0,n N∈ može

izraziti kao polinom nC  stepena n  po promjenjivoj .cosθ

Za m k≠ izračunajmo integral
0

coscosm k d
π

θ θ θ∫ :
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0 0

1 1
cos = ( ) ( ) =

2 2
cosm k d cos m k cos m k d

π π

θ θ θ θ θ θ − + + 
 ∫ ∫

0 0

1 1
= ( ) ( ) =

2 2
cos m k d cos m k d

π π

θ θ θ θ− + +∫ ∫

0 0

1 1
= ( ) ( ) = 0.

2( ) 2( )
sin m k sin m k

m k m k

π πθ θ− + +
− +

U relaciji 

0

= 0,cosm cosk d m k
π

θ θ θ ≠∫
neka je = .x cosθ  Tada je 2 1/2= = (1 )dx sin x dθ θ− − −  tj. 

2 1/2= (1 ) .d x dxθ −− −  Funkcija cosmθ se može izraziti kao polinom
stemena m  po promjenjivoj :cosθ

= ( ) = ( ),m mcosm C cos C xθ θ

i slično imamo za .coskθ  Prema tome 
0

cos = 0cosm k d
π

θ θ θ∫  
postaje

1
2 1/2

1

(1 ) ( ) ( ) = 0.m kx C x C x dx−

−

−∫
Polinomi ( ),mC x  = 0,1,2,...,m su međusobno ortogonalni

na intervalu [ 1,1]−  u odnosu na težinsku unkciju 2 1/2(1 ) .x −−  Time 
smo dokazali Lemu 1.03 i riješili Problem 1.04.

(1.03) Lema

Funkcija ,cosmθ  za proizvoljno 0,m N∈ se može

izraziti kao polinom mC  stepena m  po promjenjivoj .cosθ  

◊
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(1.04) Problem

Pokazati da su polinomi mC iz Leme 1.03 međusobno

ortogonalni na intervalu ( 1,1)− u odnosu na težinsku unkciju
2 1/2(1 ) .x −−            ◊

Skoro na isti način (kao u tekstu iznad), može se pokazati

sljedeće: Funkcija ( 1)sin m θ+  zadovoljava jednakost

              ( 1) = ( ),msin m sin S cosθ θ θ+

gdje je mS  polinom stepena m  po promjenjivoj .cosθ  

Relacija

0

( 1) ( 1) = 0, ,sin m sin k d m k
π

θ θ θ+ + ≠∫
je ekvivalentna sa

1
2 1/2

1

(1 ) ( ) ( ) = 0.m kx S x S x dx
−

−∫

Polinomi ( )mS x su međusobno ortogonalni na intervalu

[ 1,1]− u odnosu na težinsku  funkciju 2 1/2(1 ) .x−
Na kraju posmatrajmo polinome denisane sa

  0 ( ) =1,P x

  

21
( ) = ( 1) , =1,2,3,....

2 !

n
n

n n n

d
P x x n

n dx
−

Pokažimo da za ove polinome vrijedi

1

1
( ) ( ) = 0, .n mP x P x dx za n m

−
≠∫

Zbog pogodnosti pišemo 2( 1) = ( )n
nx p x− , tako da je

1 1

1 1

1
( ) = ( ) .

2 !
m m

n nn
P x x dx p x x dx

n− −∫ ∫
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Ovaj integral ćemo izračunati za <m n pomoću rekurzije.
Prvo primijetimo da 

( ) ( ) = 0 = 1 = 0,1,2,..., 1.k
np x za x i k n± −

Potom parcijalnom integracijom, sa smjenama
( )= , = ( )m n
nu x dv p x dx

                 
1 ( 1)= , = ( )m n

ndu mx dx v p x− −

dobijamo 

1 1 ( 1) 1

1 1
( ) = ( ) .m n m

n np x x dx m p x x dx− −

− −
−∫ ∫

Ponavljajući još parcijalnu integraciju 1m − puta, dolazimo
do 

11 ( ) ( 1)

1 1
( 1) ! ( ) = ( 1) ! ( ) = 0 ( < ).m n m m n m

n nm p x dx m p x m n− − −

− −
 − −  ∫

Prema tome,

1

1
( ) = 0, < .m

nP x x dx za m n
−∫

Kako je mP  polinom stepena ,m  slijedi da 

1

1
( ) ( ) = 0, .n mP x P x dx za n m

−
≠∫

Polinomi ( )nP x su međusobno ortogonalni na intervalu

[ 1,1]− u odnosu na težinsku unkciju 1.  U tekstu iznad smo pokazali 
rješenje Problema 1.05:

 (1.05) Problem

Pokazati da su polinomi denisani sa

  0 ( ) =1,P x

  
21

( ) = ( 1) , =1,2,3,....
2 !

n
n

n n n

d
P x x n

n dx
−

međusobno ortogonalni na intervalu ( 1,1)−  u odnosu na 
težinsku unkciju 1.                                                                                  ◊
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Napomena: Polinomi ( )nH x  se zovu Hermitovi polinomi 
reda .n Ovi polinomi se mogu dobiti kao rješenja Hermit-ove
dierencijalne jednačine reda n  

                            2 2 = 0.y xy ny′′ ′− +

Prvih šest Hermitovih polinoma su

  0 ( ) =1H x ,

  1( ) = 2H x x ,

  2
2 ( ) = 4 2H x x − ,

  3
3( ) = 8 12H x x x− ,

  4 2
4 ( ) =16 48 12H x x x− + ,

  5 3
5 ( ) = 32 160 120H x x x x− + .

Polinomi ( )mC x  i ( )mS x  zovu se trigonometrijski polinomi 
ili Chebichef-ovi polinomi prve i druge vrste reda .n  Ovi polinomi 
se mogu dobiti kao rješenja Chebiche-ove dierencijalne jednačine
reda n  

                   
2 2(1 ) = 0.x y xy n y′′ ′− − +

Chebiche-ovi polinomi se također,mnogoopštije, primjenjuje
u sistemima ortogonalnih polinoma u odnosu na proizvoljnu težinsku
unkciju. Prvih šest Chebiche-ovi polinomi prve vrste izraženih
preko stepena promjenjive x su:

  0 ( ) =1C x ,

  1( ) =C x x ,

  2
2 ( ) = 2 1C x x − ,

  3
3( ) = 4 3C x x x− ,

  4 2
4 ( ) = 8 8 1C x x x− + ,

  5 3
5 ( ) =16 20 5C x x x x− + .
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Polinomi ( )nP x  se zovu Legendre-ovi polinomi reda .n
Ovi polinomi se dobiju kao rješenja Legendre-ove diferencijalne 
jednačine reda n  

                  
2(1 ) 2 ( 1) = 0.x y xy n n y′′ ′− − + +

Prvih šest Legendre-ovih polinoma su

  0 ( ) =1P x ,

  1( ) =P x x ,

  2
2

1
( ) = (3 1)

2
P x x − ,

  3
3

1
( ) = (5 3 )

2
P x x x− ,

  4 2
4

1
( ) = (35 30 3)

8
P x x x− + ,

  5 3
5

1
( ) = (63 70 15 )

8
P x x x x− + .

2. Gram-Schmidt-ov proces ortonormalizacije

Neka je 0 ( ),xφ  1( ),xφ  2 ( ),...xφ  proizvoljan niz funkcija na 

intervalu ( , ),a b  takav da su sve funkcije u nizu integrabilne i linearno 

nezavisne. U tekstu koji slijedi, interval ( , )a b se može zamjeniti

beskonačnim intervalom ( , )a ∞  ili sa intervalom ( , ),−∞ ∞  ali pod 
uslovom da svi integrali koji se posmatraju postoje. Pretpostavićemo

da je svaka linearna kombinacija 0 0= ... ,m mψ α φ α φ+ + konačnog

broja φ -jeva sa konstantnim koecijentima 0 ,..., mα α ne svi nula,
različita od nule na skupu tački koje su dovoljne da naprave određen

integral od 2 ,ψ nad posmatranim intervalom, različit od nule.

U tekstu koji slijedi simboli 0 ,φP P  1 ,GP P ..., nGP P 

predstavljaju realne brojeve, kao i simboli , ,i jgφ〈 〉  za , = 1,2,... .i j n  
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Neka je

  2 2
0 0 0= = [ ( )] ,

b

a
d x dxφ φ∫P P

  0 0
0 1/2

0 0

( ) ( )
( ) = = ,

x x
g x

d

φ φ
φP P

tako da je 2
0[ ( )] =1.

b

a
g x dx∫  Neka je

  10 1 0 1 0= , = ( ) ( ) ,
b

a
c g x g x dxφ φ〈 〉 ∫

  1 1 10 0 1 1 0 0( ) = ( ) ( ) = ( ) , ( ),G x x c g x x g g xφ φ φ− − 〈 〉

  2 2
1 1 1= = [ ( )] ,

b

a
d G G x dx∫P P

  
1 1

1 1/2
1 1

( ) ( )
( ) = = .

G x G x
g x

d GP P
Tada je 

1 0 1 1 0 0 0( ) ( ) = ( ( ) , ( )) ( ) = 0,
b b

a a
G x g x dx x g g x g x dxφ φ− 〈 〉∫ ∫

1
1 0 0 1 0

1 1

( ) 1
( ) ( ) = ( ) = ( ) ( ) = 0,

b b b

a a a

G x
g x g x dx g x dx G x g x dx

G G∫ ∫ ∫P P P P

2
1[ ( )] =1.

b

a
g x dx∫
U opštem slučaju neka su unkcije 2 ( ),g x  3( ),g x ... denisane

uzastopno sa relacijama

  = , = ( ) ( ) ,
b

nk n k n ka
c g x g x dxφ φ〈 〉 ∫

  
1 1

=0 =0
( ) = ( ) ( ) = ( ) , ( ),

n n

n n nk k n n k kk k
G x x c g x x g g xφ φ φ− −

− − 〈 〉∑ ∑

  2 2= = [ ( )] ,
b

n n na
d G G x dx∫P P

  
1/2

( ) ( )
( ) = = .n n

n
n n

G x G x
g x

d GP P
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Matematičkom indukcijom nije teško pokazati da je svaka od

funkcija ( )ng x  ortogonalna na 0 ( ),g x ..., 1( )ng x−  

( ) 1
( ) ( ) = ( ) = ( ) ( ) =

b b b
n

n m m n ma a a
n n

G x
g x g x dx g x dx G x g x dx

G G∫ ∫ ∫P P P P

1

=0

1
= ( ) , ( ) ( ) =

nb

n n k k ma
kn

x g g x g x dx
G

φ φ
− 

− 〈 〉 
 

∑∫P P

1

=0

1 1
= ( ) ( ) , ( ) ( ) =

nb b

n m n k k ma a
kn n

x g x dx g g x g x dx
G G

φ φ
−

− 〈 〉∑∫ ∫P P P P

1

=0

1 1
= , , ( ) ( ) ,

n b

n m n k k ma
kn n

g g g x g x dx
G G

φ φ
−

〈 〉 − 〈 〉∑ ∫P P P P

i da je svaka od funkcija 0 ( ),g x ..., ( )ng x normalizovana,
tj. imaju vrjednost 1 kao integral njihovih kvadrata nad intervalom 

( , ).a b Kako je relacija ortogonalnosti simetrična, isto tako možemo

reći da su proizvoljne dvije unkcije ,ig  jg međusobno ortogonalne,

za .i j≠ Činjenica da su g -ovi oboje, i međusobno ortogonalne i
normalizovane, se sumira u jednu riječ, koju zovemo  ortonormirane 
funkcije.

Ako kao φ -ove uzmemo konkretno funkcije 1,  ,x  2x  i 3 ,x  

na intervalu ( 1,1)− tada kao odgovarajuće g -ove ćemo dobiti
1
,

2
 

3
,

2
x  21 5

(3 1)
2 2

x −  i ( )31 7
5 3 .

2 2
x x− Pokažimo ovo.

  
12 2 2

0 0 1
= = 1 = 1 = 2d dxφ

−∫P P P P ,

  0
0 1/2

0

( ) 1
( ) = =

2

x
g x

d

φ
,

tako da je 
1 2

01
[ ( )] =1.g x dx

−∫  Dalje

  
1

10 0 1

1
= , = = 0,

2
c x g x dx

−
〈 〉 ∫
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  1 1 10 0 0( ) = ( ) ( ) = 0 ( ) = ,G x x c g x x g x xφ − − ⋅

  
12 2

1 1

2
= = = ,

3
d x x dx

−∫P P

  1

3
( ) = ,

2
g x x

tako da je 
1

1 01
( ) ( ) = 0,g x g x dx

−∫  
1 2

11
[ ( )] =1.g x dx

−∫  Dalje

  
12 2

20 0 1

1 2
= , = = ,

32
c x g x dx

−
〈 〉 ∫

  
12 2

21 1 1

3
= , = = 0,

2
c x g x xdx

−
〈 〉 ∫

  2 2
2 20 0 21 1

1
( ) = ( ) ( ) = ,

3
G x x c g x c g x x− − −

  
2

12 2 2
2 1

1 1 8
= = = ,

3 3 45
d x x dx

−

 − − 
 ∫P P

  2 2
2

45 1 1 5
( ) = = (3 1),

8 3 2 2
g x x x

 − − 
 

tako da je 
1

2 01
( ) ( ) = 0,g x g x dx

−∫  
1

2 11
( ) ( ) = 0,g x g x dx

−∫  

1 2
21

[ ( )] =1.g x dx
−∫  Na kraju

   
13 3

30 0 1

1
= , = = 0,

2
c x g x dx

−
〈 〉 ∫

  
13 3

31 1 1

3 6
= , = = ,

2 5
c x g x xdx

−
〈 〉 ∫

  
13 3 2

32 2 1

1 5
= , = (3 1) = 0,

2 2
c x g x x dx

−
〈 〉 −∫

3 3 3
3 30 0 31 1 32 2

6 3 3
( ) = ( ) ( ) ( ) = = ,

5 2 5
G x x c g x c g x c g x x x x x− − − − −
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2
13 2 3

3 1

3 3 8
= = = ,

5 5 175
d x x x x dx

−

 − − 
 ∫P P

  ( )3 3
3

175 3 1 7
( ) = = 5 3 ,

8 5 2 2
g x x x x x

 − − 
 

tako da je 
1

3 01
( ) ( ) = 0,g x g x dx

−∫  
1

3 11
( ) ( ) = 0,g x g x dx

−∫  

1

3 21
( ) ( ) = 0,g x g x dx

−∫  
1 2

31
[ ( )] =1.g x dx

−∫  Primijetimo da su dobijeni 

polinomi 
1
,

2
 

3
,

2
x  21 5

(3 1)
2 2

x −  i ( )31 7
5 3

2 2
x x−  u stvari prva

četiri normirana Lagendre-ova polinoma.
Opisana procedura za konstrukciju ortogonalnog sistema iz 

proizvoljnog datog skupa funkcija je poznata pod imenom  Gram-
Schmidt-ov proces ortogonalizacije. Formalizujmo prethodno 
napisani tekst:

(2.01) Teorema (Gram-Schmidt-ova postupak ortogonalizacije)

Neka je 0 ( ),xφ  1( ),xφ  2 ( ),xφ  ... ( )n xφ  proizvoljan niz funkcija 

na intervalu ( , ),a b  takav da su sve funkcije iz niza integrabilne na 

( , )a b i linearno nezavisne. Tada je Gram-Schmidt-ov niz denisan
sa

                

0
0

2
0

( )
( ) = ,

[ ( )]
b

a

x
g x

x dx

φ

φ∫

1

=0

2
1

=0

( ) ( ) ( ) ( )

( ) = =1,2,3,...,

( ) ( ) ( ) ( )

bk

k k i i
i a

k
b bk

k k i i
ia a

x x g x dx g x

g x za k n

x x g x dx g x dx

φ φ

φ φ

−

−

 
−  

 
  

−  
   

∑ ∫

∑∫ ∫
ortonormiran niz.                                                        ◊
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(2.02) Vježba

Primjenom Gram-Schmidtovog postupka ortogonalizacije 
konstruisati ortonormiran sistem polazeći od skupa unkcija

2 3{1, , , },x x x koristeći interval ( 1,1).−                                                            ◊

Funkcija ng  je u stvari linearna kombinacija od 0 ,φ ..., nφ  
(pod frazom linearna kombinacija će se uvijek podrazumjevati
linearna kombinacija sa konstantnim koecijentima)

 0 0

0

1
( ) = ( ),g x x

d
φ

  10
1 1 1 0

1 1 1

1 1
( ) = ( ) = ( ) ( ),

c
g x G x x g x

d d d
φ −

  20 21
2 2 2 0 1

2 2 2 2

1 1
( ) = ( ) = ( ) ( ) ( ),

c c
g x G x x g x g x

d d d d
φ − −

 ...

, 10 1
0 1 1

1 1
( ) = ( ) = ( ) ( ) ( ) ... ( ),n nn n

n n n n

n n n n n

cc c
g x G x x g x g x g x

d d d d d
φ −

−− − − −

i obrnuto, s obzirom da su koecijenti uz nφ  u izrazu za ,ng  

u svim slučajima različiti od nule, relaciska veza φ -eva sa g -ovima 

se može uspješno riješiti, svaki nφ  je linearna kombinacija od 0 ,g ...,

.ng Pokažimo ovo zadnje.

Već smo primjetili da je svaki ( )ng x  linearna kombinacija 

od 0 ( ),xφ  1( ),xφ ..., ( ).n xφ Drugim riječima za svaki ( )ng x  postoje 

koecijenti ,nia R∈  ( = 0,1,...,i n ) takvi da

  0 0 1 1( ) = ( ) ( ) ... ( ),n n n nn ng x a x a x a xφ φ φ+ + +

tj. ako posmatramo funkcije 0 ( ),g x  1( ),g x ..., ( )ng x  imamo

  0 00 0( ) = ( ),g x a xφ

  1 10 0 11 1( ) = ( ) ( ),g x a x a xφ φ+
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  2 20 0 21 1 22 2( ) = ( ) ( ) ( )g x a x a x a xφ φ φ+ +
     ...

  0 0 1 1( ) = ( ) ( ) ... ( ).n n n nn ng x a x a x a xφ φ φ+ + +

Jednakosti iznad možemo napisati u matričnom obliku

               

0 00 0

1 10 11 1

2 20 21 22 2

0 1 2

=

( ) 0 0 ... 0 ( )

( ) 0 ... 0 ( )

( ) = ... 0 ( ) .

( ) ... ( )n n n n nn n

A

g x a x

g x a a x

g x a a a x

g x a a a a x

φ
φ
φ

φ

     
     
     
     
     
     
          

     

Ako napisanu gornje-trougaonu matricu označimo sa ,A  
kako je iia različit od nule za svaki = 0,1,2,.., ,i n  matrica A  je 
nesingularna, pa dati sistem ima jedinstveno rješenje. Matrica koja je
inverzna gornje-trougaonoj matrici mora biti gornje-trougona. Prema 
tome svaki nφ se može napisati kao linearna kombinacija od 0 ,g  1,g  
..., .ng  Iz ovoga slijedi da je  ng  ortogonalan na svaku linearnu 
kombinaciju od 0 ,φ  ..., 1nφ − . Time smo dokazali sljedeće dvije leme:

(2.03) Lema

Neka su 0 ,φ  ..., ,nφ  0 ,g  ..., ,ng  funkcije iz Teoreme 2.01. 

Tada svaka funkcija ,kg  = 0,1,..., ,k n se može napisati kao linearna

kombinacija od 0 ,φ  ..., ,kφ  i obrnuto, svaka funkcija ,kφ  = 0,1,..., ,k n  

se može napisati kao linearna kombinacija od 0 ,g  ..., .kg            ◊

(2.04) Lema

Neka su 0 ,φ  ..., ,nφ  0 ,g  ..., ,ng  funkcije iz Teoreme 2.01. 

Tada je funkcija ,kg  = 0,1,..., ,k n  ortogonalna na svaku linearnu 

kombinaciju od 0 ,φ  ..., 1.kφ −                                                                        ◊
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Ako je ( )xγ  neka linearna kombinacija od 0 ,φ ..., nφ  koja 

je ortogonalna na svaku od funkcija 0 ,φ ..., 1,nφ −  ona mora biti 

konstanta pomnožena sa ( ).ng x Ovo možemo vidjeti iz procesa

konstrukcije 1/2( ) = ( )/ ,n n ng x G x d  gdje su 10c i ostali koecijenti

niza nkc  u funkcijama ( )nG x jedinstveno određeni zbog zahtjeva

ortogonalnosti u svakom koraku, a koecijenti uz ( )n xφ  su jedinice 

(
1

=0

( ) =
n

n n nk k
k

G x c gφ
−

−∑ ). Iako osobina ortogonalnosti sama po 

sebi dozvoljava množenje čitavog izraza ( )nG x  sa proizvoljnim 

konstantnim aktorom, da je ( )xγ konstanta pomnožena sa ( )ng x  

možemo pokazati i na sljedeći način. Ako su > 0na  i na ′ koecijenti

uz nφ  u ng  i γ -i redom

           0 0( ) = ( ) ... ( ),n n ng x a x a xφ φ+ +

           0 0( ) = ' ( ) ... ( ),n nx a x a xγ φ φ′+ +

izraz n
n

n

a
g

a
γ ′− ne sadrži nφ ; i on je linearna kombinacija od

0 ,φ ..., 1nφ −  koji je ortogonalan na svaku od ovih funkcija (kako je 

γ ortogonalna na svaku od 0 ,φ ..., 1nφ −  i kako je ng  ortogonalna na 

svaku od 0 ,φ ..., 1nφ −  slijedi da je i n
n

n

a
g

a
γ ′−  ortogonalna na svaku od 

0 ,φ ..., 1nφ − ), pa je ortogonalna i na sebe, tj. integral njezinog kvadrata

nad posmatranim intervalom je nula. Ovo znači da je = 0,n
n

n

a
g

a
γ ′−  

pa kako su φ -jevi linearno nezavisni svi koecienti po kojima je ova

unkcija izražena, preko članova od 0 ,φ ..., 1,nφ −  moraju biti nula. 

Dalje, ako je posmatrana γ  normalizovana i vrijedi da je 0,na y′ ≤  

γ mora biti identički jednaka sa .ng Time smo dokazali Lemu 2.05:
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(2.05) Lema

Ako je ( )xγ  linearna kombinacija od 0 ,φ  ..., nφ  koja je 

ortogonalna na svaku od funkcija 0 ,φ  ..., 1,nφ −  tada postoji konstanta 

Rα ∈  takva da ( ) = ( ),nx g xγ α  za svako .x   ◊

3. Ortogonalni polinomi koji odgovaraju proizvoljnoj
težinskoj unkciji

Neka je ( )xρ  ne-negativna funkcija koja je integrabilna 

nad ( , ),a b i koja ima osobinu da je vrijednost određenog integrala

( )xρ  nad ( , )a b u stvari pozitivan. U većini važnih primjena ( )xρ  
će biti neprekidan i pozitivan kroz čitav interval, osim možda u
krajnjim tačkama, gdje može nestati ili postati beskonačan. U slučaju

beskonačnog intervala obično se pretpostavi da je proizvod ( )xρ  sa 
proizvoljnim polinomom, integrabilan, nad posmatranim intervalom.

Neka je proizvod 1/2[ ( )] ,kx xρ  = 0,1,2,...k  uzeta kao funkcija iz 

Teoreme 2.01. Odgovarajuće unkcije ( ),ng x  koje su u stvari linearne 

kombinacije ovih (Lema 2.03), će biti oblika 1/2[ ( )] ( ),nx p xρ  gdje su 

( )np x  polinomi stepena .n Izračunajmo prvih nekoliko polinoma.

      2 1/2 0 2
0 0= = [ ( )] = ( ) ,

b

a
d x x x dxφ ρ ρ∫P P P P

  
1/2 0

1/2 1/2
0 01/2

0 0

[ ( )] 1
( ) = = [ ( )] = [ ( )] ( ),

x x
g x x x p x

d d

ρ ρ ρ

gdje je 0

0

1
( ) = .p x

d
Izračunajmo 1( )g x

  

1/2 1 1/2
10 1 0

0 0

1 1
= , = [ ( )] [ ( )] ,= ( ) ,

b b

a a
c g x x x dx x xdx

d d
φ ρ ρ ρ〈 〉 ∫ ∫
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1/2 1 1/2 1/2 10
1 1 10 0 10

0 0

1
( ) = ( ) ( ) = [ ( )] [ ( )] = [ ( )] ,

c
G x x c g x x x c x x x

d d
φ ρ ρ ρ

 
− − −  

 
  2 2

1 1 1= = [ ( )] ,
b

a
d G G x dx∫P P

  1/2 1/2101
1 11/2

1 1 1 0

( ) 1
( ) = = [ ( )] = [ ( )] ( ),

cG x
g x x x x p x

d d d d
ρ ρ

 
−  

 

gdje je 10
1

1 1 0

1
( ) = .

c
p x x

d d d
− Izračunajmo 2 ( )g x

  

1/2 2 1/2 2
20 2 0 0 0= , = [ ( )] [ ( )] ( ) = ( ) ( ) ,

b b

a a
c g x x x p x dx x x p x dxφ ρ ρ ρ〈 〉 ∫ ∫

  

1/2 2 1/2 2
21 2 1 1 1= , = [ ( )] [ ( )] ( ) = ( ) ( ) ,

b b

a a
c g x x x p x dx x x p x dxφ ρ ρ ρ〈 〉 ∫ ∫

  

1/2 2 1/2 1/2
2 2 20 0 21 1 20 0 21 1( ) = ( ) ( ) ( ) = [ ( )] [ ( )] ( ) [ ( )] ( ) =G x x c g x c g x x x c x p x c x p xφ ρ ρ ρ− − − −

  

( )1/2 2 1/2 2 20 21 1021
20 0 21 1

0 1 1 0

= [ ( )] ( ) ( ) = [ ( )] ,
c c cc

x x c p x c p x x x x
d d d d

ρ ρ
 

− − − − −  
 

  2 2
2 2 2= = [ ( )] ,

b

a
d G G x dx∫P P

1/2 2 1/221 10 202 21
2 21/2

2 2 2 1 2 1 0 2 0

( ) 1
( ) = = [ ( )] = [ ( )] ( ),

c c cG x c
g x x x x x p x

d d d d d d d d d
ρ ρ

 
− − −  

 

gdje je 2 21 10 2021
2

2 2 1 2 1 0 2 0

1
( ) = .

c c cc
p x x x

d d d d d d d d
− − −  

Ako pretpostavimo da su 1/2( ) = [ ( )] ( ),k kg x x p xρ  

= 0,1,..., 1,k n −  funkcije dobijene Gram-Schmidtovim 

postupkom ortogonalizacije pomoću unkcija 1/2( ) = [ ( )] ,k
k x x xφ ρ  

= 0,1,2,..., 1,k n −  gdje je svaki ( )kp x  polinomi stepena ,k  tada za 
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( )ng x  imamo

1/2 1/2= , = [ ( )] [ ( )] ( ) = ( ) ( ) ,
b bn n

nk n k k ka a
c g x x x p x dx x x p x dxφ ρ ρ ρ〈 〉 ∫ ∫

( )1 1 11/2 1/2 1/2

=0 =0 =0
( ) = ( ) ( ) = [ ( )] [ ( )] ( ) = [ ( )] ( )

n n nn n
n n nk k k kk k k

G x x c g x x x x p x x x p xφ ρ ρ ρ− − −
− − −∑ ∑ ∑

2 2= = [ ( )] ,
b

n n na
d G G x dx∫P P

11/2
1/2 =0

( ) 1 1
( ) = = [ ( )] ( ) .

nnn
n kk

n n n

G x
g x x x p x

d d d
ρ − 

−  
 

∑

Prema tomematematičkom indukcijom sad nije teško pokazati
teoremu 3.01.

(3.01) Teorem

Neka je dat skup funkcija 

 { }1/2 1/2 1/2 2 1/2[ ( )] ,[ ( )] ,[ ( )] ,...,[ ( )] ,...nx x x x x x xρ ρ ρ ρ
i neka je ( )xρ  ne-negativna funkcija takva da integral 

proizvoda proizvoljnog polinoma sa ( )xρ  nad intervalom ( , )a b  
uvijek postoji. Tada Gram-Schmidtovim postupkom iz datog 
skupa unkcija možemo konstruisati ortonormiran sistem

{ }1/2 1/2 1/2 1/2
0 1 2[ ( )] ( ),[ ( )] ( ),[ ( )] ( ),...,[ ( )] ( ),...nx p x x p x x p x x p xρ ρ ρ ρ

gdje su ( ),kp x  = 0,1,2,..., ,...,k n  polinomi stepena k .    ◊

Polinomi ( )np x  su normirani ortogonalni ili ortonormirani 

polinomi sa ( )xρ kao težinskom unkcijom. Oni zadovoljavaju
uslove 

( ) ( ) ( ) = 0, ,
b

m na
x p x p x dx m nρ ≠∫

2( )[ ( )] =1.
b

na
x p x dxρ∫

Svaki od polinoma je stepena prikazan kao njegov subskript,
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i koecijent uz član nx je pozitivan. Ove osobine potpuno određuju

sistem polinoma ( ).np x

Pokažimo da je proizvoljan ortogonalan sistem unkcija

1 2{ ( ), ( ),..., ( )}nf x f x f x  linearno nezavisan. Pretpostavimo da je suma 

=1
( ) = 0

n

k kk
f xα∑  za neke 1,..., .kα α  Tada 

2 2

=1 =1 =1 =1

0 = 0 ( ) = ( ) ( ) = | | [ ( )] .
b b bn n n n

k k i i k k k k
k k i ka a a

f x dx f x f x dx f x dxα α α α 
⋅  

 
∑ ∑ ∑ ∑∫ ∫ ∫
Ovo povlači da je = 0kα  za svaki =1,2,..., .k n prema tome 

1 2{ ( ), ( ),..., ( )}nf x f x f x  je linearno nezavisan skup. Time je dokazana 
Teroema 3.02.

(3.02) Teorem

Ortogonalni sistemi su linearno nezavisni.                       ◊

Prema tome možemo zaključiti da je sistem

{ }1/2 1/2 1/2 1/2
0 1 2[ ( )] ( ),[ ( )] ( ),[ ( )] ( ),...,[ ( )] ( )nx p x x p x x p x x p xρ ρ ρ ρ

linearno nezavisan, pa je i skup polinoma

{ }0 1 2( ), ( ), ( ),..., ( )np x p x p x p x

linearno nezavisan. Ili drugim riječima, svaki polinom n

-tog stepena se može izraziti kao linearna kombinacija od 0 ( ),p x ...,

( ).np x  Svaki ( )np x je ortogonalan na svaki polinom nižeg stepena

u odnosu na težinsku unkciju ( ),xρ  tj. ako je ( )q x  bilo koji takav 
polinom,

( ) ( ) ( ) = 0.
b

n

a

x p x q x dxρ∫
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Ove činjenice su direktne posljedice opštih rezultata dobijenih
u Lemama 2.03 i 2.04. U tekstu iznad smo pokazali sljedeće dvije
tvrdnje:

 (3.03) Propozicija

Neka su ( ),kp x  = 0,1,..., ,k n  polinomi iz Teoreme 3.01. Tada se 
svaki polinom n -tog stepena može napisati kao linearna kombinacija

od 0 ( ),p x  ..., ( ).np x                                                                          ◊

(3.04) Posljedica

Neka su ( ),kp x  = 0,1,..., ,k n  polinomi iz Teoreme 3.01. Tada 

je svaki ( )kp x ortogonalan na proizvoljan polinom nižeg stepena, u

odnosu na težinsku unkciju ( ).xρ                                                             ◊

4. Razvijanje proizvoljne funkcije u red

Polinomi ( )np x  iz Teoreme 3.01 se mogu koristiti za formalno 
razlaganje proizvoljne funkcije u red. Formule su komplikovanije 
zbog prisustva težinske unkcije, ali su u drugu ruku, jednostavnije
zbog činjenice da su p -ovi normalizovani. Želimo znati kada se

proizvoljna funkcija ( )f x može napisati u obliku reda

0 0 1 1
=0

( ) = ( ) ( ) ... = ( )n n
n

f x c p x c p x c p x
∞

+ + ∑
tj. kada se funkcija ( )f x može razviti u red po ortogonalnim

polinomima ( ).np x  Pretpostavimo da se ( )f x može razviti u ovakav

red i da su sljedeće operacije opravdane. Množenjem sa ( ) ( )kx p xρ  i 
integriranjem u granicama od a  do b  dobijemo 

=0

( ) ( ) ( ) = ( ) ( ) ( ) .
b b

k n k na a
n

x f x p x dx c x p x p x dxρ ρ
∞

∑∫ ∫
Zbog ortonormiranih osobina polinoma ( ),kp x  svi integrali 

na desnoj strani jednaki su nuli, osim kada je = ,k n i u tom slučaju

( ) ( ) ( ) =1.
b

k ka
x p x p x dxρ∫  
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Prema tome 

= ( ) ( ) ( ) .
b

k ka
c x f x p x dxρ∫

Koecijenti ( )nc x  se nazivaju Furijerovi koecijeni 

koecijenti unkcije ( )f x  u odnosu na ortonorirane polinome 

( )np x sa težinskom unkcijom ( ).xρ  Red 
=0

( ),n nn
c p x

∞∑  gdje su nc  

Furijeovi koecijenti unkcije ( )f x  naziva se  Furijeov red funkcije 

( ).f x Furijeovi koecijenti postoje za svaku unkciju ( )f x  koja je 

kvadratno sumabilna na ( , )a b sa težinskom unkcijom ( ).xρ  Na 
osnovu nejednakosi Cauchy-Bunjakovskog 

( ) ( )1/2 1/2
2 2

1 2 1 2( ) ( ) [ ( )] [ ( )]
b b b

a a a
f x f x dx f x dx f x dx≤∫ ∫ ∫

integral ( ) ( ) ( )
b

ka
x f x p x dxρ∫  konvergira za ovakve funkcije. 

Dalke, za svaku ovakvu unkciju ( )f x možemo napisati njen
Fourierov red, ali bez daljeg ispitivanja ne znamo da li je red

konvergira i ako konvergira da li mu je suma ( ).f x

Ako je 
=0

( )n n
n

c p x
∞

∑  Furierov red funkcije ( )f x  (tj. ako su 

= ( ) ( ) ( )
b

n na
c x f x p x dxρ∫ ) onda pišemo 

=0

( ) ( ).n n
n

f x c p x
∞

∑:

Prethodni tekst možemo sumirati sljedećom teoremom:

(4.01) Teorema
(Furierovo razlaganje u odnosu na ortogonalne polinome)

Neka je 

{ }1/2 1/2 1/2 1/2
0 1 2[ ( )] ( ),[ ( )] ( ),[ ( )] ( ),...,[ ( )] ( ),...nx p x x p x x p x x p xρ ρ ρ ρ

ortonormirani sistem iz Teoreme 3.01. Tada se svaka kvadratno 

sumabilna funkcija ( )f x  na ( , )a b može napisati u obliku
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=0

( ).n n
n

c p x
∞

∑

Ovo zovemo Furijerovo razlaganje funkcije ( )f x  na intervalu 

( , )a b  u odnosu na ortogonalne polinome i pišemo 

=0

( ) ( ).n n
n

f x c p x
∞

∑:
Skalare 

= ( ) ( ) ( ) ,
b

n na
c x f x p x dxρ∫
zovemo Furierovi koecijenti unkcije ( )f x  u odnosu na 

ortogonalne polinome ( )np x sa težinskom unkcijom ( ).xρ        ◊

Neka ( )ns x označavajuparcijalnu sumu reda
=0

( )k k
k

c p x
∞

∑  sve do 

člana n -tog stepena:  0 0 1 1( ) = ( ) ( ) ... ( ).n n ns x c p x c p x c p x+ + +

Ako umjesto x  uzmemo varijablu t  u formuli za Furijerove 

koecijenet = ( ) ( ) ( )
b

k ka
c t f t p t dxρ∫ , i dobijeni izraz zamjenimo

umjesto c -ova u prethodnu jednakost, dobićemo 

0 0 1 1( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( ) ,
b b b

n n na a a
s x p x t f t p t dx p x t f t p t dx p x t f t p t dxρ ρ ρ+ + +∫ ∫ ∫

[ ]0 0 1 1( ) = ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ,
b

n n na
s x t f t p x p t p x p t p x p t dxρ + + +∫

( ) = ( ) ( ) ( , ) ,
b

n na
s x t f t K x t dtρ∫

gdje je 

=0

( , ) = ( , ) = ( ) ( ).
n

n n k k
k

K x t K t x p t p x∑
U stvari, ako je ( )f x  polinom n -tog ili nižeg stepena,

( ) = ( ),nf x xπ  iz prethodnog dijela je poznato da postoji reprezentacija 

oblika 
=0

( ) = ( )n n
n

f x c p x
∞

∑ gdje je desna strana konačna suma umjesto
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beskonačnog reda. Procedura za određivanje koecijenata tada

se primjenjuje ez pitanja konvergencije, i koecijenti su dati sa

= ( ) ( ) ( ) .
b

k ka
c x f x p x dxρ∫ U ovom slučaju ( )ns x  je isti kao ( ),n xπ  

i ( )n xπ je identički proizveden pomoću ormule

( ) = ( ) ( ) ( , ) .
b

n n na
x t t K x t dtπ ρ π∫

Na primjer, posmatrajmo ortonormirane Lagendreove
polinome koje smo dobili u vježbi 2.02

  0

1
( ) = ,

2
P x

  1

3
( ) = ,

2
P x x

  
2

2

1 5
( ) = (3 1)

2 2
P x x −

  ( )3
3

1 7
( ) = 5 3

2 2
P x x x− .

Ako razvijamo polinom 3( ) = 1p x x −  preko 0 ,P  1,P  2P  i 3P  
imamo

  
1 3

0 01
= ( 1) ( ) = 2c x P x dx

−
− −∫ ,

  
1 3

1 11

6
= ( 1) ( ) =

5
c x P x dx

−
−∫ ,

  
1 3

2 21
= ( 1) ( ) = 0c x P x dx

−
−∫ ,

  
1 3

3 21

2 14
= ( 1) ( ) =

35
c x P x dx

−
−∫ .
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Prema tome 

3
0 1 2 3

6 2 14
1= 2 ( ) ( ) 0 ( ) ( ).

5 35
x P x P x P x P x− − + + +

Time smo riješili zadatak 4.02.

(4.02) Zadatak

Polinom 3( ) = 1p x x −  napisati kao linearnu kombinacju 

Lagendreoveovih ortonormiranih polinoma 0

1
( ) = ,

2
P x  

1

3
( ) = ,

2
P x x  2

2

1 5
( ) = (3 1)

2 2
P x x −  i ( )3

3

1 7
( ) = 5 3

2 2
P x x x− .             

◊
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