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1ZRACUNAVANJE VRIJEDNOSTI
TRIGONOMETRIJSKIH FUNKCIJA
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Sazetak: U ovom radu ¢emo pokazati racunanje vrijednosti
broja sin6", koristenjem teorije Galoa.
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Summary: In this paper we will show how to calculate sin 6°,
by applying Galois theory.
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Uvod

Elementarne metode u trigonometriji nam dopustaju da
pronademo ta¢nu vrijednost svih trigonometrijskih funkcija
za uglove 9° 18° itd. Medutim, upotrebom teorije Galoa,
mozemo izradunati sin6’, pa zatim i vrijednosti ostalih osnovnih
trigonometrijskih funkcija (kosinusa, tangensa i kotangensa) za ugao
od 6. Zatim, kombinujuéi uglove 6° i 9° mozemo dobiti vrijednosti
trigonometrijskih funkcija i za ugao 3° i mnoge druge.

Osnovne definicije i teoreme u teoriji polja

Ako je K potpolje polja L, onda se kaze da je L proSirenje polja
K. Svako prosirenje L polja K moze se shvatiti kao vektorski prostor
nad poljem K. Ako je dimenzija tog vektorskog prostora konacna,
onda kazemo da je L konaCno proSirenje polja K, a dimenziju
vektorskog prostora L nad poljem K oznacavamo sa (L : K) 1 zovemo
stepen prosirenja L u odnosu na K. Algebarsko prosirenje L polja K
je prosirenje takvo da je svaki element iz L korijen nekog polinoma
stepena veceg od nula sa koeficijentima iz K. Svako konacno
prosirenje je algebarsko.

Ako je K bilo koje potpolje polja C kompleksnih brojeva,

onda prema osnovnoj teoremi algebre za svaki polinom f(x) sa
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koeficijentima iz K (oznaka: f{x) € K[x] ) stepena veéeg od 0
postoji minimalno potpolje L polja C koje sadrzi sve nule polinoma
f(x) 1 samo polje K, pa se u prstenu polinoma sa koeficijentima iz L,
polinom f () razlaZe na linearne faktore. To polje L se naziva polje
razlaganja polinoma f(x) u odnosu na K.

Miminalni polinom f,(x) € K [x] elementa a iz L je polinom
najnizeg stepena pri ¢emu je najstariji koeficijent jednak jedinici,
takav da je element o nula tog polinoma. Ako je g(x)e K [x] drugi
polinom za koji vrijedi g(a)=0,tada f, (x)|g(x).

Neka je L prosirenje polja K. Za element a iz L kazemo da je
seperabilan nad K, ako je o algebarski element nad K, a osim toga
minimalni polinom f,(x) € K [x] elementa a.u odnosu na K ima samo
jednostruke nule. Ako je svaki elemenat iz polja L seperabilan onda
za polje L kazemo da je seperabilno. Svako kona¢no separabilno
prosirenje polja K je jednostavno tj. postoji & £ L tako da je L = K(«x).

Zapolje K kaze se da je algebarski zatvoreno ako nema pravih
tj. strogih algebarskih prosirenja. Za svako polje K postoji algebarski
zatvoreno algebarsko proSirenje K polja K.

Neka su L 1 M dva proSirenja polja K. Izomorfizam
(monomorfizam) :L —+ M zove se relativni izomorfizam
(monomorfizam) u odnosu na K, ako ostavlja na miru sve elemente
polja K.

Ako je L algebarsko, a M algebarski zatvoreno proSirenje
polja K, tada postoji relativni monomorfizam ¢: L — M u odnosu
na K. Ukoliko je L=K(et) jednostavno algebarsko prosirenje polja K,
tada takvih relativnih monomorfizama ima upravo onoliko koliko
minimalni polinom f(x) € K[x] elementa @ u odnosu na K ima
razli¢itih nula ( u bilo kom polju razlaganja L" toga polinoma u
odnosu na K).

Neka je L algebrasko proSirenje polja K. Re¢i ¢emo da je L
normalno proSirenje polja K, ako je L invarijantno u odnosu na svaki
relativni monomorfizam @: L — L u odnosu na K.

Ako je fl(x) € K[x] seperabilan polinom (tj. ako svaki
nesvodljiv faktor tog polinoma ima samo jednostruke nule), tada je
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polje razlaganja L polinoma f(x) u odnosu na K kona¢no, normalno
1 seperabilno prosirenje polja K. Postoji teorema koja kaze: Kona¢no
algebarsko prosirenje L polja K je normalno ako i sako ako je to polje
razlaganja nekog polinoma sa koeficijentima iz K.

Relativni automorfizmi polja L u odnosu na K ¢ine grupu
u odnosu na kompoziciju morfizama. Ta grupa se naziva Galoaova
grupa polja L u odnosu na K i oznacava se sa Gal(L / K). Ta grupa
ima upravo (L : K) elemenata i1 K je polje invarijanata te grupe (tj.
elementi polja K ostaju nepromijenjeni pod djelovanjem bilo kojeg
elementa iz te grupe). Ako je n broj razliCitih korijena algebarske
jednagine f(x) = 0 u polju L, tada je Galoaova grupa izomorfna sa
nekom podgrupom grupe permutacija od n elemenata.

Nekaje K polje karakteristike p, a L (normalno) proSirenje polja
K. Re¢i ¢emo da je L (normalno) polje radikala nad K, ako postoji niz
medupoljak= K, = K; - £ K, = LtakavdajeK, poljerazlaganja
nekog Cistog polinoma f;(x) = x™ + a, € K,_,(i = 1,2,...,r ) nad
K;_;.U tom slucaju kaze se da je polje radikala L nad K zadano nizom
medupolja. Svako polje radikala L nad K je konac¢no 1 seperabilno
prosirenje polja K. Ako je L normalno polje radikala nad poljem K
tada je Galoaova grupa rjesiva.

Prisjetimo se pojma rjeSive grupe. Neka je data grupa (X
, T). Tada se podgrupa (X’,+) te grupe generisana svim elemetima
oblika x +v —x —w,(x,v €X) naziva komutatorska podgrupa
grupe (X, +). Komutatorska podgrupa grupe (X’,+) oznafava se sa
(X",%) 1 naziva komutatorska podgrupa drugog reda grupe (X,+).
Rekurzivno se definise komutatorska podgrupa (X' +) i — tog reda
kao komutatorska podgrupa grupe (X" +), tj. X' =@y g
tim §to se dogovorom uzima X‘® = X. Za grupu (¥, +) kazemo da je
rjesiva ako postoji prirodan broj r takav da je X = {0].

Zahtjev da se svi korijeni algebarske jednacine f(x) = 0 nad
poljem K mogu iz koeficijenata te jednacine dobiti u konacnom broju
koraka uzastopnom primjenom operacija sabiranja, oduzimanja,
mnozenja, djeljenja 1 korjenovanja, moze se formulisati i u obliku
zahtjeva da sve nule polinoma f(x), a time i L polje razlaganja tog
polinoma budu sadrZani u nekom polju radikala nad poljem K.
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Teorem: Neka je f(x) € K[x] polinom nad poljem K
karakteristike 0. Tada se algebarska jednacina f(x) = 0 mozZe rijesiti
pomocu radikala nad poljem K, ako i samo ako je Galoaova grupa te
jednacine (u odnosu na K) rjesiva.

Teorem (osnovna teorema Teorije Galoa): Neka je L kona¢no
normalno i seperabilno prosirenje polja K, a G = Gal(L/K). Tada
H — L, H je podgrupa grupe & = Gal(L/K), a

L,={aelo(a)=a,ceH}

predstavlja bijektivno preslikavanje skupa svih podgrupa
H grupe G na skup svih medupolja L, (K< L, c L). Pri tome
je H=_Gal(L/Ly). Osim toga, H je normalna podgrupa grupe
G = Gal(L/K), ako i samo ako je L ; normalno pro$irenje polja K; u
tom slucaju je Gal(Ly/K) = G/H.

Kako izracunati sin6°

Prvo ¢emo pronaci polinom sa racionalnim koeficijentima
tako da je sin 6’ njegov korijen.
Primijetimo da je
sin30° = sin(5- 6°) = sin(3 - 6°) cos(2- 6°) + cos(3 - 6%)sin(2-6%) = =

= 16sin°6°% — 20sin®6° + 5sin&°

b3 |

Odavde dolazimo do polinoma &iji je korijen sin6° :

plx) =32x° —40x° +10x—1 (1)

To je ogigledno, da ako je sin6” korijen polinoma (1), da su

3

= . k), k = 1,2,3,4korijeni

= #

tadaibrojevi sin(6° +¥ : kj sin [6'3' -

[

polinoma (1), jer je sin5-(6o +¥-k) = sin(30°+360'k) =sin30°

sin5 - (6° 4+ Z . k) = sin(30° + 2kxn) = sin30°. Dakle,
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korijeni polinoma (1) su sin6’, sin78° =cos12°, sin150° :%,

sin222° = —cos48°, sin294° = —cos 24",

Jedan od ovih korijena je racionalan, pa je polinom (1)
reducibilan nad Q (skup racionalnih brojeva) i ima linearan faktor
x — % Zbog udobnosti razmatranja, uvodimo novu varijablu 2x = t.
Tada dobijamo polinom

f(t) =;o(£)=32 (E);—ﬂm(i)a—lﬂ(g)—1=r5—5r5—5r—1=

2 2 2
=(t—-1)
et —dtt — 4+ 1) = (t—1) - g(t)
gdje je
g)=t'+1 -4 -4t +1 (2)
Korijeni polinoma g(¢) su
2-sin6%,2-5in78% = 2. cos12%,2-5in222° = =2 - cos48°,2 - sin294° = =2 - cos24°

Prema teoremu o racionalnim korijenima polinoma, jedine
moguce racionalne nule su 11 -1, no uvrStavanjem ovih vrijednosti u
polinom vidimo da 1 i -1 nisu korijeni polinoma g(¢).

Prema tome, polinom g(¢) je seperabilan i ireducibilan
nad Q. Neka je L polje razlaganja polinoma g(¢). Tada je
L= Q(sin6" cos12% cos247 cos487). [zra¢unajmo stepen
prosirenja.

Iz teorema  spomenutih  iznad slijedi da je

(Q(sin6® cos12% cos24° co548%): Q) = 4
, broj elemenata u pripadnoj Galoavoj grupi 4, 1 da je
L = @(sin6%, cos12°, cos24°, cos487) jednostavno polje, posto
je polje razlaganja seperabilnog polinoma seperabilno, kona¢no i
normalno algebarsko prosirenje.
cosl12° =1 — 2sin®6° cos24® = 2c0s?12 — 1,

cos48° = 2cos®24 — 1, —siné° = 2co0s%48 — 1

Racionalna transformacija t — 2 —t°t — 2 —t* prevodi
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korijene polinoma g(#) u druge korijene. Ova transformacija definise

O- automorfizam & polja L tako da
o(2-s5in6%) = 2 — (2-s5in6° )* = 2(1 — 2s5in?6%) = 2 cos125,

g(2-cos12%) =2 — (2-cos12%)* = 2(1 — 2cos”12) = —2cos24°,
g(—2-cos24%)=2— (—2-c0s24°)* = 2(1 — 2cos’24) = —2cos487,

-

o(—2-cos48%) =2 — (—2-cos48°)* = 2(1 — 2cos’48) = 2 -sin6°  (3)

Ovdje vidimo da svi korijeni polinoma g(¢) pripadaju
g(t) pripadaju polju @(sin6%), te da je polje razlaganja polinoma
g(t) jednostavno prosirenje, tj. L = Q(sin 6°), Galoaova grupa sadrzi
4 elementa {1, 7, a*,a%}, gdje je & automorfizam dat sa (3). Posto je
Galoaova grupa cikli¢ka, to je ona Abelova, a sve Abelove grupe
su rjesive, pa je Galoaova grupa pridruzena polju razlaganja naseg
polinoma rjesiva, to znaci da se njegove nule mogu dobiti pomocu
radikala.

Iz Lagranzeove teoreme o redu podgrupe u konacnim
grupama slijedi da nasa Galoaova grupa od netrivijalnih podgrupa
moze sadrzavati samo podgrupe drugoga reda. Svaka grupa mora
sadrzavati neutralni element, u naSem slucaju to je identi¢no
preslikavanje. I nakon kraceg razmatranja zakljucujemo da ciklicka
grupa reda Getiri ima taéno jednu pravu podgrupu H,(H = 1, H = G)
:H ={1,07}, |H| = 2. Podgrupi H prema osnovnoj teoremi Teorije
Galoa odgovara medupolje M takvo da je to maksimalno potpolje u
Q(sin6%) ¢&iji su elementi invarijantni u odnosu na transformacije iz
H, tj u odnosu na transformaciju @ *. Na osnovu iste teoreme slijedi da
je (@(sin67): M) = 2,(M: @) = 2. Dakle, medupolje je kvadratno.
To znaci da svaki elemenat iz @(=sin6°) je nula nekog kvadratnog
polinoma sa koeficijentima iz M.

Naime, ako je (L:K)=2, onda za proizvoljno & £ L, elementi
1,a, & su linearno zavisni, tj. postoje p, ¢ i 7 iz polja K tako da
p+goa+rat=0.

Kvadratni polinom je reducibilan nad M ako i samo ako
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elemenat pripada M. Specijalno i za sin6* postoji kvadratni polinom
sa koeficijentima iz M tako da je sin6" nula tog polinoma. Na
isti naCin koeficijenti od ovog kvadratnog polinoma su korijeni
kvadratnog polinoma sa racionalnim koeficijentima. Dakle, mi
mozemo izraCunati svaki elemenat polja @(sin6®) rjeSavajuéi dvije
kvadratne jednacine.

Posmatrajmo elemente @ i £ u Q(sin6%) tako da a =2
siné® — 2c0s524° = t; + o7(t;), gdje je t; =2 siné" f =1t - t3,
t; = —2c0524° To je evidentno da su t; i t3 korijeni kvadratnog
polinomap(t) =t* —at + 5.Sdrugestrane o (o) = a, o () = §
,tj. @ i f su invarijanta u odnosu na @ . Pa pripadaju medupolju M.
Zbog toga postoje polinomi sa racionalnim koeficijentima tako da su
ceee 1 5 Korijeni tih polinoma.

6-66

@ =2 sinb®— 2c0s24° = 2sing® — 2sinb6° = 4sin " cos = = —2c0s36° = 4sin’18° -2
B =2 sin6°- (—2c0s524%) = —2(sin30° — sin18°) = 2sin18°— 1

Vidimo iz ovih relacija da M = @(sin18%). Ovo znaci da je
sinl38° korijen kvadratnog polinoma sa racionalnim koeficijentima.
Umjesto da racunamo « i 8 kao korijene kvadratnog polinoma,
izraCunacemo sinl8°, a onda ¢emo izraCunati @ i f preko sinl8°
. Pronadimo kvadratni polinom sa racionalnim koeficijentima za
sinl8°. Mozemo vidjeti da je sin18° nula polinoma 4t~ + 2t — 1

. Dakle sinlg8® = i

Polinom 4¢* + 2t —1 moZemo dobiti iz:
0 = cos36° — 5sin54° = (1 — 25in” 18°) — (35in18° — 4sin? 18°)
= (sin18° — 1)(4sin”18° + 2sinl18" — 1)

Sada
1+ *.,"'E *.,"'E —3
L = — =
2 2
Kvadratni polinom ¢ije sunule t; = 2sin6°it; = —2cos24°

glasi:

-

1+ *.,"'Er 3 — *.,"E _
2 2
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Pozitivni korijen prethodne jednakosti je

4 30—8,E—F-1
=

2singt=—— "~ 3&_6"5 —= paje sing® =
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