MATEMATIKA

Safet Penji¢

ULOGA SPEKTRALNIH PROJEKTORA
U RJESAVANJU SISTEMA HOMOGENIH
DIFERENCIJALNIH JEDNACINA SA
KONSTANTNIM KOEFICIJENTIMA 1 JEDNA
ZANIMLJIVA PRIMJENA U BIOLOGIJI

SaZetak

Zapodprostore X, Y prostora\l kazemodasukomplementarni
kadgod NN =X +Y i XY ={0} i u tom slucaju za V' kazemo da
Jje direktna suma od X i Y, i ovo oznacavamo sa V=X @Y . Ovo
je ekvivalentno sa tvrdnjom da za svaki veV postoje jedinstveni
vektori xeX i yeY takvi da v=x+y. Za proizvoljan takav v
mozZemo definisati operator P sa Pv=x iovo je jedinstven linearni
operator sa osobinom Pv=x (v=x+y, xeX i yeY) koji je

poznat pod imenom projektor na X paralelno sa Y. U ovom radu
posmatrat cemo spektralne projektore i iskoristiti njihove osobine

za rjesavanje sistema diferencijalnih jednacina oblika y'=Ay Ccije
rjeSenje treba zadovoljavati inicijalni uslov y(0)=c, i razmatrati

c¢emo slucaj samo kada je matrica sistema A dijagonabilna. Da
bi smo dosli do odgovarajuceg rjesenja prvo smo uveli definiciju
funkcije na dijagonabilnim matricama. Poslije toga je prezentirana
jedna njihova zanimljiva primjena - primjena kod difuzije (Sirenja)
celija u medicini i biologiji. Na kraju rada je prezentiran MatLab kod
funkcije koja daje rjesenje sistema diferencijalnih jednacina kada

nam je data matricu sistema A , dimenzija 3x3 i matrica kolona
datog uslovac .

Kljucne rijeci: spektralni projektori, dijagonabilna matrica,
sistem homogenih linearnih diferencijalnih jednacina
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ROLE OF SPECTRAL PROJECTORS IN SOLVING
SYSTEMS OF HOMOGENEOUS LINEAR
DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS AND ONE INTERESTING
APPLICATION IN BIOLOGY

Summary

Subspaces X, Y of aspace VI are said to be complementary
whenever NN =X +Y and X NY ={0}, in which case V is said

to be the direct sum of X and Y, and this is denoted by writing
V=X @Y. This is equivalent to saying that for each ve\ there is

unique vectors xe X and y €Y such thatv=x+y. For arbitrary
such v we can define operator P by Pv=x, and this operator is
unique linear operator with property Pv=x (v=x+y, xe X and
v eY )andis called the projector onto X along Y. In this paper we
will consider spectral projectors and we will use their properties to
solve a systems of first-order linear differential equations, which can
be write in matrix form as y'=Ay with given initial value y(0)=c

, and we will examine only case when matrix A of given system is
diagonalizable. For these purpose we had firs defined functions of
diagonalizable matrices. After that we have presented one interesting
application - an application to diffusion of cells in medicine and
biology. In the end of paper we give MatLab code of function which
solves systems of first-order linear differential equations when we

have matrix of system A of form 3x3 and matrix-column of initial
value c .

Keywords: spectral projectors, diagonalizable matrix, systems
of homogeneous linear differential equations
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0 Osnovne definicije i rezultati

DefiniSimo oznake koje ¢emo koristiti u nastavku teksta i
prisjetimo se nekih osnovnih definicija i teorema iz Linearne algebre.

Za nxn matricu A , skalare A4 1vektore x, ,=0 koji zadovoljavaju

jednakost Ax=Ax, zovemo redom, svojstvene vrijednosti 1

svojstveni vektori matrice A , 1 bilo koji takav par (4,x) nazivamo

svojstveni par matrice A . Skup svih razli¢itih svojstvenih vrijednosti
¢emo oznacCavati sa o(A).

Za dvije nxn matrice A 1 B kazemo da su sli¢ne kadgod
postoji nesingularna matrica P takva da je P AP =B . Proizvod

P'AP se naziva transformacija slicnosti na A . Za kvadratnu

matricu A kazemo da je dijagonabilna kadgod je A slicna

dijagonalnoj matrici. Potpun skup svojstvenih vektora matrice A
, koja je oblika nxn, je bilo koji skup od n linearno nezavisnih

svojstvenih vektora matrice A . Algebarska visestrukost svojstvene

vrijednosti A je broj puta u kojoj se ona ponovi kao korijen
karakteristicnog polinoma. Algebarsku viSestrukost od A ¢emo

oznaCavati sa algmult (1) . Geometrijska viSestrukost svojstvene

vrijednosti 4 je dim ker(A— Al). Geometrijsku viSestrukost od A

¢emo oznacavati sa geomult ,(A).
Tvrdnji (a.1)-(a.5) su poznate od ranije (iz Linearne algebre) a
zainteresiranog ¢itaoca mozemo uputiti na [2] (ili [5] ili [3]).

(a.l) Aeoc(A) < A-Al je singularna matrica <
det(A-AI)=0
(a.2) {x=0]|x € ker(A— A1)} je skup svih svojstvenih vektora

pridruzenih A . Prostor E = ker(A— Al) se naziva svojstveni prostor
matrice A .

(a.3) Matrica A, oblika nxn, je dijagonabilna ako i samo
ako A posjeduje potpun skup svojstvenih vektora.

(a.4) Matrica A oblika nxn sa k razliitith svojstvenih

vrijednosti o(A)=1{4,,4,,...,4,} je dijagonabilna ako i samo ako
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postoje matrice {G,,G,,...G,} takve da
A=A4G+4,G,+..+ 4G, (1)
gdje matrice G, imaju sljedece osobine
(i) G, jeprojektorna ker(A—AJ[) paralelnosa im(A—-AlT)

(i) G,G =0 gdjeje i = j.
(ii7) G +G +...+G =1

Razvoj (1) je poznat pod imenom _spektralna dekompozicija

matrice A ,amatrice G, senazivaju spektralni projektori pridruzeni

matrici A .

(a.5) Matrica A, oblika nxn, je dijagonabilna ako i samo

ako je algmult (A1) = geomult ,(1).

1. Funkcije definisane na dijagonabilnim matricama

Sta bi za kvadratnu matricu A zna¢ilo da napiSemo sinA
, e*, InA i sli¢no. Naivan pristup bi mogao biti da jednostavno

primijenimo danu funkciju na svaki element matrice A tako da

a, a,)\’(sinag, sina
: 11 12 11 12
sm( j:( . . j (2)
a, sina,, sina,,
Ali rade¢i ovako ni jedna osobina kod matri¢nih funkcija se
nec¢e poklopiti sa njihovim skalarnim kolegama. Na primjer, kako

je sin’x+cos’x =1 za sve skalare x, voljeli bi da nasa definicija

od sinA 1 cosA kao rezultat dadne analogni matri¢ni identitet

sin’A+cos’A=I za sve kvadratne matrice A . Jasno je da pristup
po vrijednostima (2) neée imati ove osobine.

Drugi nacin da definiSemo matri¢nu funkciju koja ¢e imati iste
osobine kao njihove skalarne kolege je da koristimo razvoje funkcija

u beskonacne redove. Na primjer, posmatrajmo eksponencijalnu
funkciju
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Formalno zamjenjivanje skalarnog argumenta z sa

kvadratnom matricom A (z°=1 je zamjenjeno sa A°=I) kao
rezultat daje beskonacan red matrica

2 3
et =I+A+—+—+... (3)
PANEKCY
koji se naziva matri¢ni eksponencijal. lako ovaj pristup
ima rezultat da matri¢ne funkcije imaju iste osobine kao i njihove
skalarne kolege, velika mana ovakvog pristupa je da svaki put
moramo razmisljati o konvergenciji, i svaki put se sukobljavamo sa
problemom opisa elemenata pomocu limesa.

Medutim, ako je A dijagonabilna matrica, tada je

A=PDP"' =P diag(4,...,4,)P""

A*=PD'P"' =P diag(Af,... /" )P" gdje je
A 0 .. 0
0 . 0
diag(ﬂ“...,ﬂn) = . /12 5
0 0 A,
paje

S AY & PDP - D' ’
ot = - = P( — |P'=P diag(eﬂi,...,e )
;; ! ; k! ; Kt

Drugim rijec¢ima, ne moramo koristiti beskonacan red (3) da

definisemo e . Umjesto toga, definidemo e” = diag(e™,e?,....e™)
1 stavimo

e* =P"P ' =P a’iag(eﬂl ,e/12 ,...,el” P
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Ova ideja se moze poopstiti na bilo koju funkciju
f(z) koja je definisana na svojstvenim vrijednostima A
dijagonabilne matrice A=PDP~' definisu¢i f(D) da bude
f(D)=diag(f(4), f(4,),.... f(4,)) 1stavljajuci

f(A)=Pf(D)P =P diag(f (%), [ (A)sers f(4,))P .

Puno viSe o funkcijama definiranim na dijagonabilnim

matricama mozete procitati u [2] na stranicama 525-540. Ovdje samo
jos sumirajmo tvrdnje koje ¢emo koristiti u nastavku teksta:

Neka je A=PDP"' dijagonabilna matrica gdje
su  svojstvene  vrijednosti u D = diag(A1LLAL..., 4 1)

grupirane po ponavljanju. Za funkciju f(z) koja ima

kona¢nu  vrijednost za  svaki A eoc(A) defini§imo

fa)r 0 .. 0
f(A)=Pf(D)P"' =P S (ﬂf)l ? P
0 0 . fU
= f()G + f(L)G .t ()G, (4)

gdje su G,-evi i-te spektralne projekcije koje se mogu
izracunati na neki od sljede¢ih nacina:

(i) G, jeprojektor na ker(A— A1) paralelno sa ;

(iiy G=X,Y] gdje kolone matrice X, formiraju bazu za

ker(A— A1), dok su Y/ dobijeni iz matrice p-' =| —2 | gdje je
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(iii) PP”' =I=G +G ,+...+G ;

) 1 k .. -
() G=—]1,.(A-4,D), edieje 7, = [ [(4 - 2))

7T, j=i J=1

J=i

2. Primjena linearne algebre u rjeSavanju sistema
diferencijalnih jednacina

Sad razmatramo kako rijesiti sistem linearnih diferencijalnih
jednacina prvog reda sa konstantnim koeficijentima uz dati inicijalni
uslov koriStenjem svojstvenih vrijednosti i svojstvenih vektora. Za
konstante a,, cilj nam je da rijeSimo sljedeci sistem po nepoznatim

funkcijama y,(¢).

yi=apy tany, +o+a,y,; »(0)=c,
V= ay i any, ot ayy,;  »0)=c,

)

yn:an1y1+an2y2+"'+annyn; yn(O):Cn.

Kako je skalarni eksponent y(¢)=e*c jedinstveno rjeSenje
jedne diferencijalne jednacdine oblika y'(¢) = ay(¢) sa inicijalnim
uslovom y(0)=c, sasvim je prirodno da pokusamo iskoristiti

matri¢ni eksponent na potpuno isti nacin da rijeSimo sistem
diferencijalnih jednacina. Zapocet ¢emo tako Sto ¢emo napisati

sistem (5) u matriénom obliku y'=Ay, y(0)=c gdje je

»,(2) a, 4y ... 4, ¢

t a a .. a c

y= »,(?) A= .21 .22 .211 i e= 2
v, (1) a, a, .. a, c,

Ako je matrica A dijagonabilna sa o(A)={4,4,,....4,}
tada (4) garantuje da je
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At

M =e"GH+e?G .G,

Sljedece jednakosti se izvode iz osobina matrica G, koje smo
naveli u (a.4).

(i) deV 1dt =3 A" G =X 46, ) (X1 "G, ) =Ae

(i) Ae™ =e™A (zbog sli¢nih argumenata).

(iii) e Me =eMe ™™ =I=¢" (zbog sli¢nih argumenata).

Osobina (i) iznad de* /dt=Ae™ nam osigurava da je
funkcija y=e* ¢ jedno od rjesenja sistema y'=Ay sa inicijalnim
uslovom y(0)=c. Da bi vidjeli da je y=e*e jedino rjesenje,
pretpostavimo da je v(¢) neko drugo rjesenje tako daje v'=Av sa
v(0) =c . Diferenciraju¢i e v dobit ¢emo

dle ™ v]

dt
pa je e™v konstanta za sve f. Za t=0 imamo

=—eMAv+e Mv' =0,

e Mv|_,=e"v(0)=Ic=c,itime v ¢ zasve ¢t.MnoZeéiobe strane

ove jednakosti sa e* i koristeéi osobinu (iii ) iznad e *e* =I=¢"
mozemo zakljuéiti da je v=e* ¢ . Time smo dobili da je y=e*¢c
jedinstveno rjeSenje sistema diferencijalnih jednacina y'=Ay sa
inicijalnim uslovom y(0) =c.

Na kraju primijetimo da je v =G ,ce ker(A—A1T) svojstveni
vektor pridruzen svojstvenoj vrijednosti 4., tako da je rjeSenje za
y' =Ay, y(0)=c u stvari

y= eﬁtvl+ej?tvz+...+elktvk
1 ovo rjeSenje je potpuno odredeno svojstvenim parovima

(4.,v,). Moze se dokazati da se y takoder mozZe izraziti u obliku bilo
kojeg potpunog skupa nezavisnih svojstvenih vektora. U sljedecoj
teoremi sumirajmo prethodnu pricu.
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(2.01) Teorema (rjeSenje sistema diferencijalnih jednacina)

Ako je A matrica oblika nxn koja je dijagonabilna
sa o(A)={A,A,...4} tada jedinstveno rjesenje sistema
diferencijalnih jednacina y'=AYy koje zadovoljava uslov y(0)=c
je dano sa

y=ete=etv e vt +ety,

gdje je v, svojstveni vektor v.=G,c,a G, je i-ti spektralni
projektor.

(2.02) Problem

Rijesiti sistem diferencijalnih jednacina
X'=3x—y+z
y'==x+5y-z
Z'=x—-y+3z
tako da rjeSenja zadovoljavaju inicijalne uslov x(0)=1,

90)=2 i z(0)=3.

RjeSenje: Dati sistem mozemo napisati u obliku x'=Ax,

x(0)=b gdje je

X 3 -1 1 1
x=|y|, A=| -1 5 =1, i b=|2].
z 1 -1 3 3

Lagano racunanje nam daje svojstvene vrijednosti matrice A

, o(A)={4 =6,4,=3,4, =2}. Koristenjem formule

k
G,,=i| [(A-2,1),

7T )=l

J=i
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k
za raCunanje spektralnih projektora, gdje je 7, = H(/Ii -4;)
, imamo =l

1 =(A=A)(A - A4)=3-4=12;
7, = (4 =44 —4)=(3)1=-3;
=4 =-A) A4 -4,)=(-4)-(-1)=4;

. . 0 -1 1)1 -1 1 1/6 -1/3 1/6
GIZE(A—Z%I)(A—ZI):E -1 2 -1}-1 3 -1{=/-1/3 2/3 -1/3|,

I -1 0){1 -1 1 1/6 -1/3 1/6

NEIE IR R 1/3 1/3 1/3
G2=L3(A—6I)(A—ZI)=—3 -1 1 -1{-1 3 -=1|={1/3 1/3 1/3],
1 -1 =3)l1 -1 1) \1/3 1/3 1/3

| | [ - -
Gi=(A=6D(A-3D = -1 1 -1/l 2 —I|=/ 0 0 0
1 -1 =3)l1 -1 o) (-1/2 0 1/2

Lagana provjera nam pokazuje da je

G +G ,+G =1, Gi-Gj=0 zai = j
kao 1

A=1G+1,G,+1,G,
pa su dobivene matrice G,, G, 1 G, zaista spektralni
projektori pridruzeni matrici A . Sad izraCunajmo vektore v,=G,b

, v,=G,b 1 v,=G,b:

0 -1
v=l0,v,=|2,v,= 0
0
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Mozemo zakljuciti da je
x(t)=2e" —e”
y(t)=2¢"

z(t)=2e" +e
rjeSenje datog sistema diferencijalnih jednacina koje
zadovoljava date inicijalne uslove. 0

(2.03) Problem

Rijesiti sistem diferencijalnih jednacina
X'=2x-y+z
Yy =x+2y-z
Z'=x—-z+2z
tako da rjeSenja zadovoljavaju uslov x(0)=2, y(0)=3 1
z(0)=4.

RjeSenje: Dati sistem mozemo napisati u obliku x'=Ax,

x(0)=b gdje je

x 2 -1 1 2
x=|y|, A=|1 2 -1|,i b=|3|.
z 1 -1 2 4

Svojstvene vrijednosti matrice A su
o(A) = {4 =3,4, =24, =1}.
Uz pomo¢ formule

k
G~ [ [(A-4D.
7T, j=
J=i

k
za raCunanje spektralnih projektora, gdje je 7, = H(/Ii -4;)
, dobijamo j/j,
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= (A=) A4 —-4)=2;
7y = (4 =44, - 4) =-1;
7= (4 =) =4)=2;

1 0 -1 1
G=—(A-2D(A-D=|0 0 0},
0 -1 1

11 -1
Gzzil(A—n)(A—I): 11 -1,
B 11 -1

| 0 0
G=(A=3D(A-2D=|-1 0 1|
0 1

Lagana provjera nam pokazuje da je

G +G,+G=I, GG =0zai~j
kao 1

A= 4G+ 4,G,+ 4G,
pa su dobivene matrice G,, G, 1 G, zaista spektralni
projektori pridruzeni matrici A . Sad izraCunajmo vektore v,=G,b

, v,=G,b 1 v,=G,b:

1 1 0
v=0],v,=|1], v,=|2
1 1 2

Mozemo zakljuciti da je
x(t)=e" +e”
y(t)=e" +2¢'

z(t)=e" +e* +2¢'
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rjeSenje datog sistema diferencijalnih jednacina koje
zadovoljava date inicijalne uslove. 0

3. Primjena kod difuzije

Vazna tema u medicini i biologiji ukljucuje pitanje kako
droga ili hemijski sastavi uti¢u na pomjeranje jedne ¢elije na drugu u
smislu Sirenja kroz zidove ¢elije. Posmatrajmo dvije ¢elije, kao Sto je
prikazano na Figuri 1, gdje su obe izgubile dio nekog svog sastava.
Jedini¢na koli¢ina sastava je ubaCena u prvu celiju u vremenu
t =0, i1 kako vrijeme prolazi, njezin sastav se Siri prema sljede¢im
pretpostavkama.

celija 1 celija 2

FIGURA 1
Sirenje zidova jedne ¢elija u odnosu na drugu.

U svakom trenutku vremena omjer (koli¢ina po sekundi)
Sirenja jedne Celije prema drugoj je proporcionalna koncentraciji
(koli¢ina po jedini¢noj zapremini) smjese Celiji koja preda dio svog
sastava - recimo omjer Sirenja Celije 1 prema celiji 2 je o puta

koncentracija u ¢eliji 1, a omjer Sirenja celije 2 prema celiji 1 je §

puta koncentracija u ¢eliji 2. Pretpostavimo da je o, 5 >0.
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(3.01) Problem

Odrediti koncentraciju smjese svake od celija u bilo kojem
trenutku vremena t, i, posmatrajuci duzi vremenski period, odrediti
koncentraciju stabilnog stanja.

Rjesenje: Ako u, =u, (t) oznacava koncentraciju sastava u

¢eliji £ u trenutku 7, tada tvrdnja u gornjoj pretpostavci se moze
prevesti na sljedec¢i nacin:

d
% = omjer koji ulazi — omjer koji izlazi = fu, — au,, gdje u,(0) =1,

% = omjer koji ulazi — omjer koji izlazi = au, — Pu,, gdje u,(0) = 0.
t

U matricnim oznakama ovaj sistem je u'=Au, u(0)=c, gdje

A Sl

Karakteristi¢na jedna¢ina za A je A°+(a+ B)A=0, tako

da su svojstvene vrijednosti matrice A 4, =0 1 4, =—(a+p)
Primijetimo da se svojstvene vrijednosti ne ponavljaju, pa je

matrica A dijagonabilna. Koriste¢i funkciju f(z)=e”, spektralna
reprezentacija (4) nam kaze da je

eM = f(A) = f(A)G + f(4)G,= "G +e? G,

Spektralni projektori G, 1 G, se mogu izracunati po formuli

1 . L . .
G = _H';:I(A— A1), gdjeje 7, = H(/”ti —4;), gdje ¢emo dobiti

e ;:t-

daje

G-AAL_ 1 (B ﬁ]iczzﬁ: 1 (a —ﬂ}
paje -4 a+pla a A a+pf\-a p
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N =G e PG = Mﬂ ﬂjw—(aw( o —ﬁﬂ
1 : a+plla «a -a p

Sad imamo

u(t)=e"e= 1 Hﬁ ﬂ]+e-<a+ﬂ>r[“ _'BH(IJ,
a+plla « -a p 0

iz ¢ega slijedi

o - . o
u ()= L+—e @G () = ——
a+pf a+p a+pf
Posmatraju¢i duzi period, koncentracija u celiji ¢e se
stabilizirati u smislu da

(1—e @),

o

+h8

limu, (£) =

[ limu, ()=
t—0 —®

4. MatLab kod

Kod funkecije koja kao ulazne vrijednosti ima matricu sistema

A , 1 kolona matricu inicijalnog uslova b je:

function [rjesenje] = rjesi_sistem(A,b)

% MatLab kod funkcije koja daje rjesenje

% sistema diferencijalnih jednacina kada nam

% je data matricu sistema $A$, dimenzija

% $3\times 3% i matrica kolona datog uslova $c$

I=s[1 00; 010; 00 11;

syms X;

a=[0 0 0 0];

karak_pol=det(A-x*I);

% izvadimo koeficijente iz karakteristicnog polinma
[koeficijenti,t]=coeffs(karak_pol);

% dodajmo koeficijente u vektor a
for i=1:numel(koeficijenti)
a(i)=koeficijenti(i);

end
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% odredimo nule karakteristicnog polinoma
korijen=roots(a);

Tambdal=(korijen(1));
Tambda2=(korijen(2));
Tambda3=(korijen(3));

% zaokruzimo svojstvene vrijednosti na 4 decimalna
mjesta

Tambdal=round(Tambdal*1000)/1000;

Tambda2=round (Tambda2*1000)/1000;

Tambda3=round(Tambda3*1000)/1000;

% izracunajmo pi_1l, pi_2 i pi_3

pi_l=(Tambdal-Tambda2)*(Tambdal-Tambda3);
pi_2=(Tambda2-Tambdal)*(Tambda2-Tambda3);
pi_3=(Tambda3-Tambdal) *(Tambda3-Tambda2) ;

% izracunajmo Gl, G2 i G3

Gl=sym(1/pi_1)*(A-Tambda2*1)*(A-Tambda3*I);
G2=sym(1/pi_2)*(A-Tambdal*1)* (A-Tambda3*I);
G3=sym(1/pi_3)*(A-Tambdal*I1)* (A-Tambda2*I);

% izracunajmo vektore v1, v2, v3
v1=Gl*b;
v2=G2*b;
v3=G3*b;

% ispisSimo rjeSenje diferencijalne jednacine

syms t;

disp(‘RjeSenje datog sistema u matricnom obliku
je’);

rjesenje=exp(lambdal*t)*vl+exp(lambda2*t)*v2+exp
(Tambda3*t)*v3;

pretty(rjesenje)

end

Pazljivi ¢italac ¢e primijetiti da dati MatLab kod ne provjerava
da 1i je unesena matrica dijagonabilna. Naravno funkcija 1 bez tog
dijela radi dovoljno dobro a umetanje tog dijela koda ostavljamo kao
zanimljivu vjezbu.
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