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Saet Penjić

ULOGA SPEKTRALNIH PROJEKTORA
U RJEŠAVANJU SISTEMAHOMOGENIH
DIFERENCIJALNIH JEDNAČINA SA

KONSTANTNIM KOEFICIJENTIMA I JEDNA
ZANIMLJIVA PRIMJENAU BIOLOGIJI

Sažetak

Zapodprostore ,X Y prostoraV kažemodasukomplementarni

kadgod = +V X Y i ={0}Y∩X i u tom slučaju za V kažemo da

je direktna suma od X i ,Y i ovo označavamo sa = ⊕V X Y . Ovo
je ekvivalentno sa tvrdnjom da za svaki v∈V postoje jedinstveni

vektori x∈X i y∈Y takvi da =v x y+ . Za proizvoljan takav v
možemo denisati operator P sa =Pv x i ovo je jedinstven linearni

operator sa osobinom =Pv x ( =v x y+ , x∈X i y∈Y ) koji je
poznat pod imenom projektor na X paralelno sa .Y U ovom radu
posmatrat ćemo spektralne projektore i iskoristiti njihove osobine

za rješavanje sistema dierencijalnih jednačina oblika ' =y Ay čije

rješenje treba zadovoljavati inicijalni uslov (0) =y c , i razmatrati

ćemo slučaj samo kada je matrica sistema A dijagonabilna. Da
bi smo došli do odgovarajućeg rješenja prvo smo uveli deniciju
funkcije na dijagonabilnim matricama. Poslije toga je prezentirana
jedna njihova zanimljiva primjena - primjena kod diuzije (širenja)
ćelija u medicini i biologiji. Na kraju rada je prezentiran MatLab kod
unkcije koja daje rješenje sistema dierencijalnih jednačina kada

nam je data matricu sistema A , dimenzija 3 3× i matrica kolona
datog uslova c .

Ključne riječi: spektralni projektori, dijagonabilna matrica,
sistem homogenih linearnih dierencijalnih jednačina
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ROLE OF SPECTRAL PROJECTORS IN SOLVING
SYSTEMS OFHOMOGENEOUS LINEAR

DIFFERENTIALEQUATIONSWITH CONSTANT
COEFFICIENTSAND ONE INTERESTING

APPLICATION IN BIOLOGY

Summary

Subspaces ,X Y of a space V are said to be complementary

whenever = +V X Y and ={ }Y∩ 0X , in which case V is said

to be the direct sum of X and ,Y and this is denoted by writing

= ⊕V X Y . This is equivalent to saying that for each v∈V there is

unique vectors x∈X and y∈Y such that =v x y+ . For arbitrary
such v we can dene operator P by =Pv x , and this operator is
unique linear operator with property =Pv x ( =v x y+ , x∈X and

y∈Y ) and is called the projector onto X along .Y In this paper we
will consider spectral projectors and we will use their properties to
solve a systems o rst-order linear dierential equations, which can

be write in matrix orm as ' =y Ay with given initial value (0) =y c

, and we will examine only case when matrix A of given system is
diagonalizable. For these purpose we had rs dened unctions o
diagonalizable matrices. Ater that we have presented one interesting
application - an application to diffusion of cells in medicine and
biology. In the end o paper we give MatLab code o unction which
solves systems o rst-order linear dierential equations when we

have matrix of system A of form 3 3× and matrix-column of initial
value c .

Keywords: spectral projectors, diagonalizablematrix, systems
of homogeneous linear differential equations
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0 Osnovne defnicije i rezultati

Denišimo oznake koje ćemo koristiti u nastavku teksta i
prisjetimo se nekih osnovnih denicija i teorema iz Linearne algebre.

Za n n× matricu A , skalare λ i vektore 1=n×x 0 koji zadovoljavaju

jednakost = λAx x , zovemo redom, svojstvene vrijednosti i

svojstveni vektori matrice A , i bilo koji takav par ( , )λ x nazivamo

svojstveni parmatrice A . Skup svih različitih svojstvenih vrijednosti

ćemo označavati sa ( )σ A .

Za dvije n n× matrice A i B kažemo da su slične kadgod

postoji nesingularna matrica P takva da je 1 =−P AP B . Proizvod
1−P AP se naziva transormacija sličnosti na A . Za kvadratnu

matricu A kažemo da je dijagonabilna kadgod je A slična

dijagonalnoj matrici. Potpun skup svojstvenih vektora matrice A
, koja je oblika n n× , je bilo koji skup od n linearno nezavisnih

svojstvenih vektora matrice A . Algebarska višestrukost svojstvene
vrijednosti λ je broj puta u kojoj se ona ponovi kao korijen
karakterističnog polinoma. Algebarsku višestrukost od λ ćemo

označavati sa ( )algmult λA . Geometrijska višestrukost svojstvene

vrijednosti λ je ( )dim ker A λ− I . Geometrijsku višestrukost od λ

ćemo označavati sa ( )geomult λA .
Tvrdnji (a.1)-(a.5) su poznate od ranije (iz Linearne algebre) a

zainteresiranog čitaoca možemo uputiti na [2] (ili [5] ili [3]).

(a.1) ( )λ σ∈ A ⇔ λ−A I je singularna matrica ⇔

det( ) = 0λ−A I

(a.2) { = | ( )}x ker λ∈ −x 0 A I je skup svih svojstvenih vektora

pridruženih λ . Prostor = ( )E ker λ−A I se naziva svojstveni prostor

matrice A .

(a.3) Matrica A , oblika n n× , je dijagonabilna ako i samo

ako A posjeduje potpun skup svojstvenih vektora.

(a.4) Matrica A oblika n n× sa k različitih svojstvenih

vrijednosti 1 2( ) = { , ,..., }kσ λ λ λA je dijagonabilna ako i samo ako
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postoje matrice 1 2{ , ,... }kG G G takve da

1 1 2 2= ... k kλ λ λ+ + +A G G G (1)

gdje matrice iG imaju sljedeće osobine

(i) iG je projektor na ( )iker Iλ−A paralelno sa ( )iim Iλ−A
.

(ii) =i jG G 0 gdje je =i j .

(iii) 1 2 ... =k+ + +G G G I .

Razvoj (1) je poznat pod imenom spektralna dekompozicija

matrice A , amatrice iG se nazivaju spektralni projektori pridruženi

matrici A .

(a.5) Matrica A , oblika n n× , je dijagonabilna ako i samo

ako je ( ) = ( )algmult geomultλ λA A .

1. Funkcije defnisane na dijagonabilnim matricama

Šta bi za kvadratnu matricu A značilo da napišemo sinA

, eA , lnA i slično. Naivan pristup bi mogao biti da jednostavno

primijenimo danu unkciju na svaki element matrice A tako da

?
11 12 11 12

21 22 21 22

sin sin
sin = .

sin sin

a a a a

a a a a

   
   
   

(2)

Ali radeći ovako ni jedna osobina kod matričnih unkcija se
neće poklopiti sa njihovim skalarnim kolegama. Na primjer, kako

je 2 2 =1sin cosx x+ za sve skalare x , voljeli bi da naša denicija

od sinA i cosA kao rezultat dadne analogni matrični identitet
2 2 =sin cos+A A I za sve kvadratne matrice A . Jasno je da pristup

po vrijednostima (2) neće imati ove osobine.
Drugi način da denišemo matričnu unkciju koja će imati iste

osobine kao njihove skalarne kolege je da koristimo razvoje unkcija
u beskonačne redove. Na primjer, posmatrajmo eksponencijalnu
unkciju
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2 3

=0

= =1 ...
! 2! 3!

k
z

k

z z z
e z

k

∞

+ + + +∑
Formalno zamjenjivanje skalarnog argumenta z sa

kvadratnom matricom A ( 0 =1z je zamjenjeno sa 0=A I ) kao
rezultat daje beskonačan red matrica

2 3

= ...
2! 3!

e + + + +A A A
I A (3)

koji se naziva matrični eksponencijal. Iako ovaj pristup
ima rezultat da matrične unkcije imaju iste osobine kao i njihove
skalarne kolege, velika mana ovakvog pristupa je da svaki put
moramo razmišljati o konvergenciji, i svaki put se sukobljavamo sa
problemom opisa elemenata pomoću limesa.

Međutim, ako je A dijagonabilna matrica, tada je
1 1

1= = ( ,..., )ndiag λ λ− −A PDP P P
1 1

1= = ( ,..., )k k k k
ndiag λ λ− −A PD P P P gdje je

1

2
1

0 ... 0

0 ... 0
( ,..., ) = ,

0 0 ...

n

k

diag

λ
λ

λ λ

λ

 
 
 
 
 
 

  

pa je

1
1 11

=0 =0 =0

= = = = ( ,..., ) .
! ! !

k k k
n

k k k

e diag e e
k k k

λλ
−∞ ∞ ∞

− − 
 
 

∑ ∑ ∑A A PD P D
P P P P

Drugim riječima, ne moramo koristiti beskonačan red (3) da

denišemo eA . Umjesto toga, denišemo 1 2= ( , ,..., )ne diag e e e
λλ λD

i stavimo

1 11 2= = ( , ,..., ) .ne e diag e e e
λλ λ− −A DP P P P
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Ova ideja se može poopštiti na bilo koju unkciju

( )f z koja je denisana na svojstvenim vrijednostima iλ

dijagonabilne matrice 1= −A PDP denišući ( )f D da bude

1 2( ) = ( ( ), ( ),..., ( ))nf diag f f fλ λ λD i stavljajući
1 1

1 2( ) = ( ) = ( ( ), ( ),..., ( )) .nf f diag f f fλ λ λ− −A P D P P P

Puno više o unkcijama deniranim na dijagonabilnim
matricama možete pročitati u [2] na stranicama 525-540. Ovdje samo
još sumirajmo tvrdnje koje ćemo koristiti u nastavku teksta:

Neka je 1= −A PDP dijagonabilna matrica gdje

su svojstvene vrijednosti u 1 2= ( , ,..., )kdiag λ λ λD I I I

grupirane po ponavljanju. Za unkciju ( )f z koja ima

konačnu vrijednost za svaki ( )iλ σ∈ A denišimo

1

21 1

( ) 0 ... 0

0 ( ) ... 0
( ) = ( ) =

0 0 ... ( )k

f

f
f f

f

λ
λ

λ

− −

 
 
 
 
 
 

I

I
A P D P P P

I

  

1 1 2 2= ( ) ( ) ... ( ) ,k kf f fλ λ λ+ + +G G G (4)

gdje su iG -evi i -te spektralne projekcije koje se mogu
izračunati na neki od sljedećih načina:

(i) iG je projektor na ( )iker λ−A I paralelno sa ;

(ii) =i i i
ΤG X Y gdje kolone matrice iX ormiraju bazu za

( )iker λ−A I , dok su i
ΤY dobijeni iz matrice

1

21 =

k

Τ

Τ
−

Τ

 
 
 
 
 
 
 

Y

Y
P

Y


gdje je

( )1 2= | | ... | kP X X X ;
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(iii) 1
1 2= = ... k

− + + +PP I G G G ;

(iv) =1
=

1
= ( ),

k

ji j
j ii

λ
π

−∏G A I gdje je
=1
=

= ( ).
k

i i j
j
j i

π λ λ−∏

2. Primjena linearne algebre u rješavanju sistema
dierencijalnih jednačina

Sad razmatramo kako riješiti sistem linearnih dierencijalnih
jednačina prvog reda sa konstantnim koecijentima uz dati inicijalni
uslov korištenjem svojstvenih vrijednosti i svojstvenih vektora. Za

konstante ija , cilj nam je da riješimo sljedeći sistem po nepoznatim

unkcijama ( )iy t .

1 11 1 12 2 1 1 1= ... ; (0) = ,n ny a y a y a y y c′ + + +

2 21 1 22 2 2 2 2= ... ; (0) = ,n ny a y a y a y y c′ + + +

  (5)

1 1 2 2= ... ; (0) = .n n n nn n n ny a y a y a y y c′ + + +

Kako je skalarni eksponent ( ) = ty t e ca jedinstveno rješenje

jedne dierencijalne jednačine oblika ( ) = ( )y t y ta′ sa inicijalnim

uslovom (0) =y c , sasvim je prirodno da pokušamo iskoristiti
matrični eksponent na potpuno isti način da riješimo sistem
dierencijalnih jednačina. Započet ćemo tako što ćemo napisati

sistem (5) u matričnom obliku ' =y Ay , (0) =y c gdje je

1 11 12 1 1

2 21 22 2 2

1 2

( ) ...

( ) ...
= , = , = .

... ...

( ) ...

n

n

n n n nn n

y t a a a c

y t a a a c
i

y t a a a c

     
     
     
     
     
     

y A c
  

Ako je matrica A dijagonabilna sa 1 2( ) = { , ,..., }kσ λ λ λA
tada (4) garantuje da je
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1 2
1 2= ... .

tt tt k
ke e e e

λλ λ+ +A G G G

Sljedeće jednakosti se izvode iz osobina matrica iG koje smo
naveli u (a.4).

(i) ( )( )=1 =1 =1
/ = = =

k k kt tt ti i
i i i i ii i i

de dt e e e
λ λλ λ∑ ∑ ∑A AG G G A

(ii) =t te eA AA A (zbog sličnih argumenata).

(iii) = = =t t t te e e e e− −A A A A 0I (zbog sličnih argumenata).

Osobina ( i ) iznad / =t tde dt eA AA nam osigurava da je

unkcija = teAy c jedno od rješenja sistema ' =y Ay sa inicijalnim

uslovom (0) =y c . Da bi vidjeli da je = eAy c jedino rješenje,

pretpostavimo da je ( )tv neko drugo rješenje tako da je ' =v Av sa

(0) =v c . Dierencirajući te−A v dobit ćemo
[ ]

= ' = ,
t

t td e
e e

dt

−
− −− +

A
A Av
Av v 0

pa je te−A v konstanta za sve t . Za = 0t imamo

=0| = (0) = =t
te e−A 0v v Ic c , i time v c za sve t .Množeći obe strane

ove jednakosti sa teA i koristeći osobinu ( iii ) iznad = =t te e e−A A 0I

možemo zaključiti da je = teAv c . Time smo dobili da je = teAy c

jedinstveno rješenje sistema dierencijalnih jednačina ' =y Ay sa

inicijalnim uslovom (0) =y c .

Na kraju primijetimo da je = ( )i i iker λ∈ −v G c A I svojstveni

vektor pridružen svojstvenoj vrijednosti iλ , tako da je rješenje za
' =y Ay , (0) =y c u stvari

1 2
1 2= ...

tt t k
ke e e

λλ λ+ + +y v v v
i ovo rješenje je potpuno određeno svojstvenim parovima

( , )i iλ v . Može se dokazati da se y također može izraziti u obliku bilo
kojeg potpunog skupa nezavisnih svojstvenih vektora. U sljedećoj
teoremi sumirajmo prethodnu priču.
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(2.01) Teorema (rješenje sistema dierencijalnih jednačina)

Ako je A matrica oblika n n× koja je dijagonabilna

sa 1 2( ) = { , ,..., }kσ λ λ λA tada jedinstveno rješenje sistema

dierencijalnih jednačina ' =y Ay koje zadovoljava uslov (0) =y c
je dano sa

1 2
1 2= = ...

tt tt k
ke e e e

λλ λ+ + +Ay c v v v

gdje je iv svojstveni vektor =i iv G c , a iG je i-ti spektralni
projektor.

(2.02) Problem

Riješiti sistem dierencijalnih jednačina

= 3x x y z′ − +

= 5y x y z′ − + −

= 3z x y z′ − +

tako da rješenja zadovoljavaju inicijalne uslov (0) =1x ,

(0) = 2y i (0) = 3z .

Rješenje: Dati sistem možemo napisati u obliku ' =x Ax ,

(0) =x b gdje je

3 1 1 1

= , = 1 5 1 , = 2 .

1 1 3 3

x

y i

z

−     
     − −     
     −     

x A b

Lagano računanje nam daje svojstvene vrijednosti matrice A

, 1 2 3( ) = { = 6, = 3, = 2}σ λ λ λA . Korištenjem ormule

=1
=

1
= ( ),

k

i j
ji
j i

λ
π

−∏G A I
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za računanje spektralnih projektora, gdje je
=1
=

= ( )
k

i i j
j
j i

π λ λ−∏
, imamo

1 1 2 1 3= ( )( ) = 3 4 =12π λ λ λ λ− − ⋅ ;

2 2 1 2 3= ( )( ) = ( 3) 1= 3π λ λ λ λ− − − ⋅ − ;

3 3 1 3 2= ( )( ) = ( 4) ( 1) = 4π λ λ λ λ− − − ⋅ − ;

1

0 1 1 1 1 1 1/ 6 1/ 3 1/ 6
1 1

= ( 3 )( 2 ) = 1 2 1 1 3 1 = 1/ 3 2 / 3 1/ 3 ,
12 12

1 1 0 1 1 1 1/ 6 1/ 3 1/ 6

− − −    
    − − − − − − − −    
    − − −    

G A I A I

2

3 1 1 1 1 1 1/ 3 1/ 3 1/ 3
1 1

= ( 6 )( 2 ) = 1 1 1 1 3 1 = 1/ 3 1/ 3 1/ 3 ,
3 3

1 1 3 1 1 1 1/ 3 1/ 3 1/ 3

− − −    
    − − − − − −    − −     − − −    

G A I A I

3

üüüüüü
1 1

= ( 6 )( 3 ) = 1 1 1 1 2 1 = 0 0 0 .
4 4

1 1 3 1 1 0 1/ 2 0 1/ 2

− − − −    
    − − − − − − −    
    − − − −    

G A I A I

Lagana provjera nam pokazuje da je

1 2 3= , = =i j za i j+ + ⋅G G G I G G 0
kao i

1 1 2 2 3 3= λ λ λ+ +A G G G

pa su dobivene matrice 1G , 2G i 3G zaista spektralni

projektori pridruženi matrici A . Sad izračunajmo vektore 1 1=v G b

, 2 2=v G b i 3 3=v G b :

1 2 3

0 2 1

= 0 , = 2 , = 0 .

0 2 1

−     
     
     
     
     

v v v
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Možemo zaključiti da je
3 2( ) = 2 t tx t e e−

3( ) = 2 ty t e
3 2( ) = 2 t tz t e e+

rješenje datog sistema dierencijalnih jednačina koje
zadovoljava date inicijalne uslove. ◊

(2.03) Problem

Riješiti sistem dierencijalnih jednačina

= 2x x y z′ − +

= 2y x y z′ + −
= 2z x z z′ − +

tako da rješenja zadovoljavaju uslov (0) = 2x , (0) = 3y i

(0) = 4z .

Rješenje: Dati sistem možemo napisati u obliku ' =x Ax ,

(0) =x b gdje je

2 1 1 2

= , = 1 2 1 , = 3 .

1 1 2 4

x

y i

z

−     
     −     
     −     

x A b

Svojstvene vrijednosti matrice A su

1 2 3( ) = { = 3, = 2, =1}σ λ λ λA .

Uz pomoć ormule

=1
=

1
= ( ),

k

i j
ji
j i

λ
π

−∏G A I

za računanje spektralnih projektora, gdje je
=1
=

= ( )
k

i i j
j
j i

π λ λ−∏
, dobijamo
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1 1 2 1 3= ( )( ) = 2π λ λ λ λ− − ;

2 2 1 2 3= ( )( ) = 1π λ λ λ λ− − − ;

3 3 1 3 2= ( )( ) = 2π λ λ λ λ− − ;

1

0 1 1
1

= ( 2 )( ) = 0 0 0 ,
2

0 1 1

− 
 − −  
 − 

G A I A I

2

1 1 1
1

= ( 3 )( ) = 1 1 1 ,
1

1 1 1

− 
 − − − −  − 

G A I A I

3

0 0 0
1

= ( 3 )( 2 ) = 1 0 1 .
4

1 0 1

 
 − − − 
 − 

G A I A I

Lagana provjera nam pokazuje da je

1 2 3= , = =i j za i j+ + ⋅G G G I G G 0
kao i

1 1 2 2 3 3= λ λ λ+ +A G G G

pa su dobivene matrice 1G , 2G i 3G zaista spektralni

projektori pridruženi matrici A . Sad izračunajmo vektore 1 1=v G b

, 2 2=v G b i 3 3=v G b :

1 2 3

1 1 0

= 0 , = 1 , = 2 .

1 1 2

     
     
     
     
     

v v v

Možemo zaključiti da je
3 2( ) = t tx t e e+
2( ) = 2t ty t e e+

3 2( ) = 2t t tz t e e e+ +
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rješenje datog sistema dierencijalnih jednačina koje
zadovoljava date inicijalne uslove. ◊

3. Primjena kod diuzije

Važna tema u medicini i biologiji uključuje pitanje kako
droga ili hemijski sastavi utiču na pomjeranje jedne ćelije na drugu u
smislu širenja kroz zidove ćelije. Posmatrajmo dvije ćelije, kao što je
prikazano na Figuri 1, gdje su obe izgubile dio nekog svog sastava.
Jedinična količina sastava je ubačena u prvu ćeliju u vremenu
= 0t , i kako vrijeme prolazi, njezin sastav se širi prema sljedećim
pretpostavkama.

FIGURA 1

Širenje zidova jedne ćelija u odnosu na drugu.

U svakom trenutku vremena omjer (količina po sekundi)
širenja jedne ćelije prema drugoj je proporcionalna koncentraciji
(količina po jediničnoj zapremini) smjese ćeliji koja preda dio svog
sastava - recimo omjer širenja ćelije 1 prema ćeliji 2 je a puta

koncentracija u ćeliji 1, a omjer širenja ćelije 2 prema ćeliji 1 je β
puta koncentracija u ćeliji 2. Pretpostavimo da je , > 0a β .
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(3.01) Problem

Odrediti koncentraciju smjese svake od ćelija u bilo kojem
trenutku vremena t , i, posmatrajući duži vremenski period, odrediti
koncentraciju stabilnog stanja.

Rješenje: Ako = ( )k ku u t označava koncentraciju sastava u
ćeliji k u trenutku t , tada tvrdnja u gornjoj pretpostavci se može
prevesti na sljedeći način:

1
2 1 1= = , (0) =1,

du
omjer koji ulazi omjer koji izlazi u u gdje u

dt
β a− −

2
1 2 2= = , (0) = 0.

du
omjer koji ulazi omjer koji izlazi u u gdje u

dt
a β− −

Umatričnim oznakama ovaj sistem je ' =u Au , (0) =u c , gdje

1

2

1
= , = , = .

0

u
i

u

a β
a β
−     

    −    
A u c

Karakteristična jednačina za A je 2 ( ) = 0λ a β λ+ + , tako

da su svojstvene vrijednosti matrice A 1 = 0λ i 2 = ( )λ a β− +
Primijetimo da se svojstvene vrijednosti ne ponavljaju, pa je

matrica A dijagonabilna. Koristeći unkciju ( ) = ztf z e , spektralna
reprezentacija (4) nam kaže da je

1 2
1 1 2 2 1 2= ( ) = ( ) ( ) = .

t tte f f f e e
λ λλ λ+ +A A G G G G

Spektralni projektori 1G i 2G se mogu izračunati po ormuli

=1
=

1
= ( ),

k

ji j
j ii

λ
π

−∏G A I gdje je
=1
=

= ( )
k

i i j
j
j i

π λ λ−∏ , gdje ćemo dobiti

da je

2
1 2

2 2

1 1
= = = = ,i

β β a βλ
a a a βλ a β λ a β

−   −
   −− + +   

A I A
G G
pa je
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( ) ( )
1 2

1
= =t t te e ea β a ββ β a β

a a a βa β
− + − + −   

+ +    −+     

A G G

Sad imamo

( ) 11
( ) = = ,

0
t tt e e a ββ β a β

a a a βa β
− + −     

+      −+       

Au c

iz čega slijedi

( ) ( )
1 2( ) = ( ) = (1 ).t tu t e i u t ea β a ββ a a

a β a β a β
− + − ++ −

+ + +

Posmatrajući duži period, koncentracija u ćeliji će se
stabilizirati u smislu da

1 2( ) = ( ) = .lim lim
t t
u t i u t

β a
a β a β→∞ →∞+ +

◊

4. MatLab kod

Kod unkcije koja kao ulazne vrijednosti ima matricu sistema

A , i kolona matricu inicijalnog uslova b je:

function [rjesenje] = rjesi_sistem(A,b)
% MatLab kod funkcije koja daje rješenje
% sistema dierencijalnih jednačina kada nam
% je data matricu sistema $A$, dimenzija
% $3\times 3$ i matrica kolona datog uslova $c$

I=[1 0 0; 0 1 0; 0 0 1];
syms x;
a=[0 0 0 0];
karak_pol=det(A-x*I);
% izvadimo koefcijente iz karakterističnog polinma
[koefcijenti,t]=coes(karak_pol);

% dodajmo koefcijente u vektor a
or i=1:numel(koefcijenti)
a(i)=koefcijenti(i);
end
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% odredimo nule karakterističnog polinoma
korijen=roots(a);
lambda1=(korijen(1));
lambda2=(korijen(2));
lambda3=(korijen(3));

% zaokružimo svojstvene vrijednosti na 4 decimalna
mjesta

lambda1=round(lambda1*1000)/1000;
lambda2=round(lambda2*1000)/1000;
lambda3=round(lambda3*1000)/1000;

% izračunajmo pi_1, pi_2 i pi_3
pi_1=(lambda1-lambda2)*(lambda1-lambda3);
pi_2=(lambda2-lambda1)*(lambda2-lambda3);
pi_3=(lambda3-lambda1)*(lambda3-lambda2);

% izračunajmo G1, G2 i G3
G1=sym(1/pi_1)*(A-lambda2*I)*(A-lambda3*I);
G2=sym(1/pi_2)*(A-lambda1*I)*(A-lambda3*I);
G3=sym(1/pi_3)*(A-lambda1*I)*(A-lambda2*I);

% izračunajmo vektore v1, v2, v3
v1=G1*b;
v2=G2*b;
v3=G3*b;

% ispišimo rješenje dierencijalne jednačine
syms t;
disp(‘Rješenje datog sistema u matričnom obliku

je’);
rjesenje=exp(lambda1*t)*v1+exp(lambda2*t)*v2+exp

(lambda3*t)*v3;
pretty(rjesenje)
end

Pažljivi čitalac će primijetiti da dati MatLab kod ne provjerava
da li je unesena matrica dijagonabilna. Naravno unkcija i bez tog
dijela radi dovoljno dobro a umetanje tog dijela koda ostavljamo kao
zanimljivu vježbu.
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